• Title/Summary/Keyword: 소각재 재활용

Search Result 68, Processing Time 0.019 seconds

A Study on Landfill Reduction Possibility by Characteristics of Industrial Thermal Treatment Residues (사업장 열적처리 잔재물의 특성에 따른 매립저감 가능성 연구)

  • Lee, Suyoung;Kim, Kyuyeon;Jeon, Taewan;Shin, Sunkyoung
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.27 no.1
    • /
    • pp.65-75
    • /
    • 2019
  • The government is promoting recycling of waste resources through the enactment of Fundamental Law on Resource Circulation, the revision of the Wastes Control Act and zero-landfilling of untreated waste through improved processes such as recycling and diversification. As of 2015, the total amount of landfilled waste is 38,308 ton/day in Korea. The amount of landfilled waste from industrial sectors is 23,577 ton/day, accounting for 62 % of total landfilled waste. In the study, we investigated the characteristics of the thermal treatment residue among inorganic wastes and estimated the landfill reduction potential according to the relevant recycling criteria, which can go through recycling paths. As a result, it is estimated that about 5~42 % of the landfilled waste can be reduced in case mandatory recycling and landfill suppression policies such as recycling criteria for thermal processing residues and expansion of recycling obligation targets should be implemented. In order to minimize landfill disposal, it is necessary to expand the diversity of waste recycling type and the usage of recycled products.

Risk Assessment Framework for Safe Disposal and Reuse of Solidified/Stabilized Wastes (고형화 폐기물의 안정적 처분과 재활용을 위한 환경위해성 평가 체계의 연구)

  • Park, Joo-Yang
    • Journal of the Korean GEO-environmental Society
    • /
    • v.2 no.1
    • /
    • pp.15-22
    • /
    • 2001
  • The key part in risk assessments for disposal sites of solidified/stabilized (S/S) wastes is to predict the contaminant transport from the S/S wastes to the environment under dynamically changing field conditions after characterizing chemical leaching properties of the ash, to evaluate the risk from the predictions, and finally to decide the risk is acceptable. In this paper, a risk assessment framework for disposal and reuse of S/S wastes was developed considering two limiting cases of contaminant leaching. Two types of waste characterization procedures that can determine waste-specific variables for the two limiting cases were developed and verified by applying them to a landfill site of the Municipal Solid Waste incinerator ash solidified/stabilized by cement.

  • PDF

쓰레기 소각장의 환기설비 설계 사례

  • 심재곤
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.31 no.6
    • /
    • pp.35-39
    • /
    • 2002
  • 최근, 산업의 발달로 인하여 생활수준이 향상되어 대량생산과 대량소비현상이 발생하고 도시의 밀집도가 높아 단위 면적당 거주하는 인구가 증가되면서 거주지역에서 발생되는 부산물이 현저히 증가되어 환경측면에서 복합적인 환경문제에 직면해 있다. 최근까지 대책마련에 고심하고 있는 도시에서 발생된 다량의 쓰레기 처리문제는 경제적인 측면에서 몇 년 전 까지는 대부분을 매립에 의존해 왔으나, 매립 방식에 의존하였으나 지가 및 공사설비의 상승, 일부 비위생적으로 조성된 매립장에서 배출되는 침출수 및 악취 등의 환경오염이 심각한 사회문제로 대두되면서 매립장의 확보나 증설은 해당 지역주민의 반발로 지방자치단체의 골치 아픈 과제로 등장하였다. 이러한 문제점을 보완하기 위해, 최근에는 매립지 확보의 어려움과 환경보존을 위하여 쓰레기를 정적이고 위생적으로 처리하기 위하여, 소각시설이 표 1과 같이 증가하고 있으나 소각 때 발생하는 다이옥신 등 인체에 치명적인 오염을 유발시키기 때문에 소각로 건설에 대한 환경운동단체와 주민들의 반발이 거세게 제기되고 있는 현실이다. 이러한 영향에 의해 앞으로는 소각보다는 쓰레기 자체를 감량.재사용.재활용하는 처리방식이 표 1과 같이 증가되는 현실이다. 쓰레기를 소각하는 것은 제 2오염을 유발시키고, 소각장 건설비용과 유지관리에 많은 예산이 소요된다. 쓰레기소각장을 건설할 때, 인근주민이나 환경단체로부터 반대의견에 직면하게 되는데, 그 사유는 쓰레기 처리과정의 전 단계인 반입.공급 과정에서 악취발생과, 후단계인 소각설비에서 발생되는 배출가스 오염원을 완전히 제거하라는 것이다. 최근에는 소각장의 설계.시공과정에서 최대한 악취발생과 확산을 억제하는 시설에 투자를 하고 있으며, 또한 주민 편익 시설과 부대 복리 후생시설은 소각시설 주변지역 주민틀의 소각시설에 대한 부정적 이미지를 불식시키며, 외부 방문객이나 운영 관리 요원들에게 쾌적한 환경조성과 업무효율 및 근무환경의 개선에 일익을 담당하고 있다. 본 고는 환경 친화적인 쓰레기 소각장을 설계하는 측면에서 1998년도에 턴키방식으로 발주되었고 2001년 12월에 준공하여 운전하고 있는 경기도 구리시 자원회수시설의 환기설비에 적용된 설계 및 시공개념을 소개하고자 한다.

  • PDF

A Study on the Reusability of Incinerated Paper Mill Sludge Ash as Cement Additive (시멘트 혼화재로서 제지슬러지 소각재의 재활용 특성)

  • 주소영;연익준;이민희;박준규;김광렬
    • Journal of environmental and Sanitary engineering
    • /
    • v.18 no.2
    • /
    • pp.34-41
    • /
    • 2003
  • The purpose of this study is to examine the effect of stabilization disposal and recycling on incinerated paper mill sludge ash as cement additives. It was investigated chemical(pH, ICP, TGA XRD) and physical(PDA, SEM) characteristics of the incineration ash. And the pozzolanic characteristics of incineration ash was applied to cement as additive to increase the compressive strength. The results were that the pH characteristic of incineration ash was strong alkalinity, the content of silica and alumina as a pozzolanic material was 50.97%, and the average particle size was $5.03{\mu}m$ respectively. When the ash contents as cement additive were varied in 0~15%(wt) of cement weight to explore the effect of the compressive strength on the solidified cement mortar, the proper amount of the incineration ash substituted was about 5~l0%(wt). Therefore we found that using the incineration ash as cement additive obtains the recycling of waste material, the stabilization disposal, the reduction of waste disposal expense, and the protection of environmental problem, too.

A Study on Shoe Bonding Mechanism Considering Recycling (재활용을 고려한 신발 접착 메커니즘에 관한 연구)

  • Song, Hyun-Su;Moon, Kwang-Sup;Mok, Hak-Soo
    • Resources Recycling
    • /
    • v.27 no.2
    • /
    • pp.3-10
    • /
    • 2018
  • In this paper, Proposed bonding mechanism that can separate sole and upper for recycle and reuse of parts. It was confirmed that the PVC film with better physical properties than the existing parts was inserted between the sole and the upper. It was confirmed that the separation of the desired form can be induced. As a result of checking the performance of the proposed mechanism, it is confirmed that intentional separation is possible and the separated sole and upper can be recycled or reused.

Study on Recycling of Incombustion Materials from MSWI Fluidized Bed Incinerator Ash (생활쓰레기 유동상(流動床) 소각로(燒却爐) 불연물(不燃物)의 재활용에 관한 연구(硏究))

  • Choi, Woo-Zin;Park, Eun-Kyu;Kang, Seung-Kyun
    • Resources Recycling
    • /
    • v.17 no.4
    • /
    • pp.3-9
    • /
    • 2008
  • The total amount of fluidized bed incinerator ash, i.e. incombustion materials generated from the municipal solid waste incineration(MSWI) in Korea was approximately 14,000 tons in 2006. Most of the ash after ferrous metal separation is finally discard to the landfill sites. In the present work, possibility for recycling of the ash is studied to utilize the ash as raw materials for ceramic products. Incombustion materials obtained from the two different incinerators were used to recover the raw materials by applying the magnetic separation and screening process to remove metallic particles. The raw materials show relatively low heavy metals content obtained from the KSLP leaching tests. The ceramic products were prepared by mixing the clay with the various amounts of the raw material. The physical properties, i.e. shrinkage rate, absorbancy and compressive strength of the ceramic products sintered at $1,000^{\circ}C$ and $1,050^{\circ}C$, respectively were improved by increasing the addition amounts of the incinerator ash. Based on the leaching tests the ceramic products also be satisfied with the standard limits on the leachability of heavy metals because most of the metallic materials are effectively removed from the incombustion materials by appling the separation processes.

Removal of Chlorine from Fly Ash in Municipal Solid Waste Incineration Ash by Water Washing (수세에 의한 생활폐기물 소각재 중 비산재로부터 염소성분의 제거)

  • 안지환;한기천;김형석
    • Resources Recycling
    • /
    • v.10 no.5
    • /
    • pp.36-43
    • /
    • 2001
  • The chlorine component in fly ash from municipal solid waste incineration ash was removed by water washing for the purpose of recycling fly ash as a raw material of ordinary portland cement. The samples were a different kind of 리y ashes using $Ca(OH)_2$and NaOH as media of wet scrubber for flue gas cleaning. The content of soluble salts of fly ash using $Ca(OH)_2$and NaOH was 32.8%, 50.1% and the content of chlorine component, 22.9% and 26.0% respectively, which was KCl, NaCl, CaC1OH mainly. When each fly ash was washed using water under conditions of a agitation speed of 300 rpm, a liquid to solid ratio of 10, most soluble salts in fly ash were dissolved within 30 minutes and the content of chlorine component in ash was diminished to the content of 4.4%, 2.O% at $20^{\circ}C$ and 1.7%, 0.8% at $50^{\circ}C$ respectively. And the main compound of residual chlorine component in ash after water washing was friedel`s salt ($3CaO.A1_2$$O_3$.$CaCl_2$.$10H2$O). From analysis results of water quality for wastewater by water washing, the components exceeding discharged wastewater standard were only Pb and Cd. But As pH was controlled to 10 with addition of $CO_2$(g) or $Na_2$$_CO3$in water, the concentration of heavy metals such as Pb and Cd was also under discharged wastewater standard.

  • PDF

Current Status of Collection and Recycling of Used Plastics (폐플라스틱의 수거 및 재활용 현황)

  • 나근배
    • Resources Recycling
    • /
    • v.6 no.2
    • /
    • pp.47-59
    • /
    • 1997
  • Thc paper points oul ever increasing amounts of plastics used in dex, clopmg countries and the prohlelns associated with such increase. Tl~e current status of the production and usc of plaslic materials is reviewed. Also reviewed lncludc thc pahcicies and gu~dclmcs canccrning the treatment of used plastics which have already bccn mstitutcd.

  • PDF

Preparation and Mechanical Properties of Bulk Molding Compound Composite Prepared using Recycled FRP Waste Powder (폐FRP 미분말을 재활용한 BMC 복합재료의 제조 및 기계적 물성)

  • Hwang, Eui-Hwan;Jeon, Jong-Ki
    • Applied Chemistry for Engineering
    • /
    • v.21 no.2
    • /
    • pp.217-223
    • /
    • 2010
  • In general, fiber-reinforced plastics (FRP) wastes are simply buried or burned. Landfill brings about a permanent contamination of soil due to the inability of FRP to decompose and incineration causes an issue of generating toxic gases and dusts. There have been several ways to treat the FRP wastes such as landfill, incineration, chemical recycling, material recycling and the utilization of energy from combustion. Most methods excluding material recycling are known to have critical limitations in economic, technical and environmental manners. However it is known that material recycling is most desirable among the methods handling FRP wastes. In this study, to investigate the purpose of feasibility of material recycling, various bulk molding compound (BMC) specimens were prepared with the various contents of unsaturated polyester resin binder (25, 30, 35 wt%) and the various replacement ratios of FRP wastes powder (0, 25, 50, 75, 100 wt%) substituted for filler. To evaluate the physical properties BMC specimens, various tests such as tensile strength, flexural strength, impact strength, hot water resistance and SEM imaging were conducted. As a results, mechanical strengths decreased with an increase of replacement ratio of FRP waste powder and physical properties of BMC specimens were deteriorated in the hot water resistance. The fluidity of BMC with more than 50 wt% of the replacement ratio of FRP wastes powder decreased remarkably, causing a problem in the BMC composite.

Separation of Ferrous Materials from Municipal Solid waste Incineration Bottom Ash (생활폐기물(生活廢棄物) 소각(燒却) 바닥재의 자력선별(磁力選別)에 따른 ferrous material의 분리(分離) 특성(特性))

  • Um, Nam-Il;Han, Gi-Chun;You, Kwang-Suk;Cho, Hee-Chan;Ahn, Ji-Whan
    • Resources Recycling
    • /
    • v.16 no.3 s.77
    • /
    • pp.19-26
    • /
    • 2007
  • The bottom ash of municipal solid waste incineration generated during incineration of municipal solid waste in metropolitan area consists of ceramics, glasses, ferrous materials, combustible materials and food waste and so on. Although the ferrous material was separated by the magnetic separation before the incineration process, of which content accounts for about $3{\sim}11%$ in bottom ash. The formation of a $Fe_3O_4-Fe_2O_3$ double layer(similar to pure Fe) on the iron surface was found during air-annealing in the incinerator at $1000^{\circ}C$. A strong thermal shock, such as that takes place during water-cooling of bottom ash, leads to the breakdown of this oxidation layer, facilitating the degradation of ferrous metals and the formation of corrosion products and it existed as $Fe_2O_3,\;Fe_3O_4\;and\;FeS_2$. So, many problems could occur in the use of bottom ash as an aggregate substitutes in construction field. Therefore, in this study, the separation of ferrous materials from municipal solid waste incineration bottom ash was investigated. In the result, the ferrous product(such as $Fe_2O_3,\;Fe_3O_4,\;FeS_2$ and iron) by magnetic separator at 3800 gauss per total bottom ash(w/w.%) accounted for about 18.7%, and 87.7% of the ferrous product was in the size over 1.18 mm. Also the iron per total bottom ash accounted for about 3.8% and the majority of it was in the size over 1.18 mm.