• Title/Summary/Keyword: 셋업

Search Result 160, Processing Time 0.035 seconds

Construction of an ideal set-up model for lingual orthodontic treatment (설측 교정치료를 위한 셋업 모형 제작의 정밀도)

  • Bae, Gi-Sun;Son, Woo-Sung
    • The korean journal of orthodontics
    • /
    • v.35 no.6 s.113
    • /
    • pp.459-474
    • /
    • 2005
  • Making a precise and ideal set-up model is an essential part in the indirect bonding procedure for lingual orthodontic treatment. To evaluate the accuracy of the making a set-up model, 22 adult patients who received lingual orthodontic treatment with 4 bicuspid extractions were selected, and 3 sets of dental models (before, set-up, and after treatment) were measured using the set-up model gauge, an instrument for measuring the inclination and angulation of the clinical crowns on the dental model. Two sets of lateral cephalograms (before and after) from each patient were also evaluated. The mean difference between the before treatment model and the set-up model was $-3.93{\pm}6.98^{\circ}$ for the inclination and $1.87{\pm}5.79^{\circ}$ for the angulation. And the mean difference between the set-up model and the after treatment model was $-4.31{\pm}5.91^{\circ}$ labiolingually and $-2.16{\pm}3.27^{\circ}$ mesiodistally, The after treatment model differed from the before treatment model about $-8.24{\pm}5.39^{\circ}$ in inclination. There were no significant difference between the measured gauge that measured from the dental model using the set-up model gauge and the calculated gauge angle measured from the lateral cephalogram using constructed points and lines. Using the set-up model gauge, it is possible to evaluate the study model 3-dimensionally in relation with the patient's lateral cephalogram and establish whether the doctor's prescription or overcorrection is built in the set-up model precisely.

Evaluation of the Interfraction Setup Errors using On Board- Imager (OBI) (On board imager를 이용한 치료간 환자 셋업오차 평가)

  • Jang, Eun-Sung;Baek, Seong-Min;Ko, Seung-Jin;Kang, Se-Sik
    • Journal of the Korean Society of Radiology
    • /
    • v.3 no.3
    • /
    • pp.5-11
    • /
    • 2009
  • When using Image Guided Radiation Therapy, the patient is placed using skin marker first and after confirming anatomical location using OBI, the couch is moved to correct the set up. Evaluation for the error made at that moment was done. Through comparing $0^{\circ}$ and $270^{\circ}$ direction DRR image and OBI image with 2D-2D matching when therapy planning, comparison between patient's therapy plan setup and actual treatment setup was made to observe the error. Treatment confirmation on important organs such as head, neck and spinal cord was done every time through OBI setup and other organs such as chest, abdomen and pelvis was done 2 ~ 3 times a week. But corrections were all recorded on OIS so that evaluation on accuracy could be made through using skin index which was divided into head, neck, chest and abdomen-pelvis on 160 patients. Average setup error for head and neck patient on each AP, SI, RL direction was $0.2{\pm}0.2cm$, $-0.1{\pm}0.1cm$, $-0.2{\pm}0.0cm$, chest patient was $-0.5{\pm}0.1cm$, $0.3{\pm}0.3cm$, $0.4{\pm}0.2cm$, and abdomen was $0.4{\pm}0.4cm$, $-0.5{\pm}0.1cm$, $-0.4{\pm}0.1cm$. In case of pelvis, it was $0.5{\pm}0.3cm$, $0.8{\pm}0.4cm$, $-0.3{\pm}0.2cm$. In rigid body parts such as head and neck showed lesser setup error compared to chest and abdomen. Error was greater on chest in horizontal axis and in AP direction, abdomen-pelvis showed greater error. Error was greater on chest in horizontal axis because of the curve in patient's body when the setup is made. Error was greater on abdomen in AP direction because of the change in front and back location due to breathing of patient. There was no systematic error on patient setup system. Since OBI confirms the anatomical location, when focus is located on the skin, it is more precise to use skin marker to setup. When compared with 3D-3D conformation, although 2D-2D conformation can't find out the rolling error, it has lesser radiation exposure and shorter setup confirmation time. Therefore, on actual clinic, 2D-2D conformation is more appropriate.

  • PDF

Evaluation of Set-up Accuracy for Frame-based and Frameless Lung Stereotactic Body Radiation Therapy (폐암 정위체부방사선치료 시 고정기구(frame) 사용 유무에 따른 셋업 정확성 평가)

  • Ji, Yunseo;Chang, Kyung Hwan;Cho, Byungchul;Kwak, Jungwon;Song, Si Yeol;Choi, Eun Kyung;Lee, Sang-wook
    • Progress in Medical Physics
    • /
    • v.26 no.4
    • /
    • pp.286-293
    • /
    • 2015
  • The purpose of this study was to evaluate the set up accuracy using stereotactic body frame and frameless immobilizer for lung stereotactic body radiation therapy (SBRT). For total 40 lung cancer patients treated by SBRT, 20 patients using stereotactic body frame and other 20 patients using frameless immobilizer were separately enrolled in each group. The setup errors of each group depending on the immobilization methods were compared and analyzed. All patients received the dose of 48~60 Gy for 4 or 5 fractions. Before each treatment, a patient was first localized to the treatment isocenter using room lasers, and further aligned with a series of image guidance procedures; orthogonal kV radiographs, cone-beam CT, orthogonal fluoroscopy. The couch shifts during these procedures were recorded and analyzed for systematic and random errors of each group. Student t-test was performed to evaluate significant difference depending on the immobilization methods. The setup reproducibility was further analyzed using F-test with the random errors excluding the systematic setup errors. In addition, the ITV-PTV margin for each group was calculated. The setup errors for SBF were $0.05{\pm}0.25cm$ in vertical direction, $0.20{\pm}0.38cm$ in longitudinal direction, and $0.02{\pm}0.30cm$ in lateral direction, respectively. However the setup errors for frameless immobilizer showed a significant increase of $-0.24{\pm}0.25cm$ in vertical direction while similar results of $0.06{\pm}0.34cm$, $-0.02{\pm}0.25cm$ in longitudinal and lateral directions. ITV-PTV margins for SBF were 0.67 cm (vertical), 0.99 cm (longitudinal), and 0.83 cm (lateral), respectively. On the other hand, ITV-PTV margins for Frameless immobilizer were 0.75 cm (vertical), 0.96 cm (longitudinal), and 0.72 cm (lateral), indicating less than 1 mm difference for all directions. In conclusion, stereotactic body frame improves reproducibility of patient setup, resulted in 0.1~0.2 cm in both vertical and longitudinal directions. However the improvements are not substantial in clinic considering the effort and time consumption required for SBF setup.

Evaluation of Setup When Using C-Rad System in Radiotherapy (방사선치료 시 C-Rad system을 이용한 셋업의 평가)

  • Park, Eun-Tae;Ko, Seong-Jin;Choi, Seok-Yoon;Kim, Jung-Hoon;Kim, Chang-Soo;Kim, Dong-Hyun;Kang, Se-Sik
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.5
    • /
    • pp.303-310
    • /
    • 2012
  • In radiotherapy, accurate patient positioning and set up are important factor that treatment can influence success. In generally, the 3-laser system is used when the patient set up. But today the body surface scanning system(C-Rad system) is trying to use. Compare and evaluate the C-Rad system and the 3-laser system to check availability. Head and neck that are no movement of internal organs and easy to apply fixation device are limited. Alderson Rando anthropomorphic phantom and 10 patients who have lesions of head and neck are targeted. C-RAD system's setup error mean and standard deviation are the X axis($0.55{\pm}0.51mm$), Y axis($-0.2mm{\pm}0.523mm$), Z axis($-0.85{\pm}0.587mm$) in the phantom study, and in the patient study X axis($-0.05{\pm}0.621mm$), Y axis($0.075{\pm}0.755mm$) Z axis($-1.025{\pm}0.617mm$). So C-RAD system is better than 3-laser system mostly, but C-RAD system's error rate is a little worse than 3-laser system in the Z axis. When radiation treatment of head and neck, body surface contour scanning system contribute to correct positioning and minimize the set up error.

Analysis of Tool and Workpiece Setup in v-Groove Micromachining (V-그루브 미세가공에서의 공구 및 공작물 셋업 해석)

  • Cho Jung-Woo;Yang Min-Yang
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.8 s.251
    • /
    • pp.957-964
    • /
    • 2006
  • As the requirement of LCD products which are large screen and have high brightness increases, the role of light guide panel (LGP) of which micro-features diffuse the light uniformly on surface is getting important. In general, there are many errors in machining like machine tool errors process error, setup error and etc. The amount of setup error in general machining is not so big in comparison with the others, so it is mostly neglected. But, especially in v-groove micromachining, setup error has a significant effect on micro-features. Low quality product and high cost are resulted from setup error. In v-groove micromachining, to confirm the effect of setup error, it is identified and then setup error synthesis model is derived from analysis of tool and workpiece setup. In addition, to predict the micro-features affected by setup error and enhance the production efficiency, the setup condition satisfying the tolerance of micro-features is geometrically analyzed and presented.

Cluster Head Selection Protocol Using Modified Setup Phase (변형된 셋업 단계를 이용한 클러스터 헤드 선출 프로토콜)

  • Kim, Jin-Su;Choi, Seong-Yong;Han, Seung-Jin;Choi, Jun-Hyeog;Rim, Kee-Wook;Lee, Jung-Hyun
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.1
    • /
    • pp.167-176
    • /
    • 2009
  • Traditional cluster-based routing method is a representative method for increasing the energy efficiencies. In these cluster-based routing methods, the selected cluster head collect/aggregate the information and send the aggregated information to the base station. But they have to solve the unnecessary energy dissipation of frequent information exchange between the cluster head and whole member nodes in cluster. In this paper, we minimize the frequency of the information exchange for reducing the unnecessary transmit/receive frequencies as calculate the overlapped area or number of overlapped member nodes between the selected cluster head and previous cluster head in the setup phase. So, we propose the modified cluster selection protocol method that optimizes the energy dissipation in the setup phase and reuses the saved energy in the steady-state phase efficiently that prolongs the whole wireless sensor network lifetime by uniformly selecting the cluster head.

An Energy-Efficient Sensor Network Clustering Using the Hybrid Setup (하이브리드 셋업을 이용한 에너지 효율적 센서 네트워크 클러스터링)

  • Min, Hong-Ki
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.12 no.1
    • /
    • pp.38-43
    • /
    • 2011
  • Cluster-based routing is high energy consumption of cluster head nodes. A recent approach to resolving the problem is the dynamic cluster technique that periodically re-selects cluster head nodes to distribute energy consumption of the sensor nodes. However, the dynamic clustering technique has a problem that repetitive construction of clustering consumes the more energies. This paper proposes a solution to the problems described above from the energy efficiency perspective. The round-robin cluster header(RRCH) technique, which fixes the initially structured cluster and sequentially selects cluster head nodes, is suggested for solving the energy consumption problem regarding repetitive cluster construction. A simulation result were compared with the performances of two of the most widely used conventional techniques, the LEACH(Low Energy Adaptive Clustering Hierarchy) and HEED(Hybrid, Energy Efficient, Distributed Clustering) algorithms, based on energy consumption, remaining energy for each node and uniform distribution. The evaluation confirmed that in terms of energy consumption, the technique proposed in this paper was 26.5% and 20% more efficient than LEACH and HEED, respectively.

WLAN Security Access Protocol for Rapid Initial Link Setup Process (신속한 초기 링크 셋업 과정을 위한 WLAN 보안 접속 프로토콜)

  • Kim, Min-Hee;Park, Chang-Seop
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.25 no.6
    • /
    • pp.1515-1523
    • /
    • 2015
  • It has been prevalent to be serviced through WLAN(Wireless Local Area Network) as a variety of mobile devices have been introduced. If the number of mobile devices increases rapidly for the network access in a limited range of ESS(Extended Service Set), a lengthy connection delays are induced due to the initial link setup process of the IEEE 802.11i which is WLAN security standard. In this paper, we propose a new initial link setup protocol which can be executed in the ESS area of WLAN.

A Study on the Complex Target & Pre-Control Chart Apply to Lean Production (Lean 생산방식에 적합한 Complex Target & Pre-Control Chart 적용방안 연구;동일 허용공차를 생산하는 다품종 소량생산을 중심으로)

  • Shin, Heung-Sub;Ree, Sang-Bok
    • Proceedings of the Korean Society for Quality Management Conference
    • /
    • 2007.04a
    • /
    • pp.187-195
    • /
    • 2007
  • 최근 우리나라에서 도요타를 벤치마킹하여 TPS를 도입하는 회사가 늘어나고 있다. 다품종 소량생산의 Lean 생산방식을 적용하기 위해서는 셋업시간의 단축 뿐만 아니라 이에 따른 셋업 품질능력이 향상되어야 한다. 따라서, 공정을 셋업하는 작업자들에게 이러한 Complex Target & Control Chart를 적용한다면, 통계적인 지식 없이도 공정의 불량을 예방 할 수 있으리라 확신한다. 이러한 관리도를 사용하여 공정능력을 향상한다면, 일본과 같은 높은 수준의 공정능력을 확보 할 수 있을 것이다. 단, 본 관리도는 현장 작업자를 위한 불량예방을 위한 품질관리 도구이며, 공정변동을 관리하기 위해서는 엔지니어 측면에서 관리도의 활용도 병행되어야 한다.

  • PDF

Analyses of the Setup Errors using on Board Imager (OBI) (On Board Imager (OBI)를 이용한 Setup Error 분석에 대한 연구)

  • Kim, Jong-Deok;Lee, Haeng-O;You, Jae-Man;Ji, Dong-Hwa;Song, Ju-Young
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.19 no.1
    • /
    • pp.1-5
    • /
    • 2007
  • Purpose: The accuracy and advantages of OBI(On Board Imager) against the conventional method like film and EPID for the setup error correction were evaluated with the analysis of the accumulated data which were produced in the process of setup error correction using OBI. Materials and Methods: The results of setup error correction using OBI system were analyzed for the 130 patients who had been planned for 3 dimensional conformal radiation therapy during March 2006 and May 2006. Two kilo voltage images acquired in the orthogonal direction were fused and compared with reference setup images. The setup errors in the direction of vertical, lateral, longitudinal axis were recorded and calculated the distance from the isocenter. The corrected setup error were analyzed according to the lesion and the degree of shift variations. Results: There was no setup error in the 41.5% of total analyzed patients and setup errors between 1mm and 5mm were found in the 52.3%. 6.1% patients showed the more than 5mm shift and this error were verified as a difference of setup position and the movement of patient in a treatment room. Conclusion: The setup error analysis using OBI in this study verified that the conventional setup process in accordance with the laser and field light was not enough to get rid of the setup error. The KV images acquired using OBI provided good image quality for comparing with simulation images and much lower patients' exposure dose compared with conventional method of using EPID. These advantages of OBI system which were confirmed in this study proved the accuracy and priority of OBI system in the process of IGRT(Image Guided Radiation Therapy).

  • PDF