• Title/Summary/Keyword: 셀

Search Result 5,378, Processing Time 0.04 seconds

Enhancement of Membrane Durability in PEMFC by Fucoidan and Tannic Acid (후코이단과 탄닌산에 의한 PEMFC 고분자막의 내구성 향상)

  • Mihwa Lee;Sohyeong Oh;Cheun-Ho Chu;Young-Sook Kim;Il-Chai Na;Kwonpil Park
    • Korean Chemical Engineering Research
    • /
    • v.61 no.1
    • /
    • pp.45-51
    • /
    • 2023
  • In order to improve the durability of the PEMFC(Proton Exchange Membrane Fuel Cells) polymer membrane, a radical scavenger and a support are used. In this study, the durability of membranes containing fucoidan extracted from seaweeds and tannic acid serving as a crosslinking agent is evaluated to improve chemical and physical durability. Physical durability is evaluated by measuring tensile strength, and chemical durability is measured by Fenton experiment. Membrane and electrode assembly (MEA) is prepared and mechanical and chemical durability are measured through accelerated durability evaluation in the cell. The tensile strength measurement showed that fucoidan and tannic acid can improve the mechanical durability of the membrane by improving the strain rate and yield strength. It is shown in Fenton experiment that fucoidan acts as a radical scavenger. As a result of the accelerated durability test in the unit cell, fucoidan improved both chemical and mechanical durability, increasing the accelerated durability evaluation time by 38.1% compared to the additive-free membrane. When tannic acid is added, the durability of the polymer membrane is improved by 13.9% by improving the mechanical durability.

Cone Resistivity Penetrometer for Detecting Thin-Layered Soils (협재층 탐지를 위한 선단비저항 콘)

  • Yoon, Hyung-Koo;Jung, Soon-Hyuck;Kim, Rae-Hyun;Lee, Jong-Sub
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.8
    • /
    • pp.15-25
    • /
    • 2010
  • The thin-layered sand seam in clay affects the soil behavior. Although the standard cone penetrometer (A: $10cm^2$) have been used to evaluate the thin-layered soil, the smaller diameter cone penetrometer have been commonly recommended because of the high resolution. The purpose of this study is the development and application of the Cone Resistivity Penetrometer (CRP), which detects qc, fs, and electrical resistivity at cone tip for the evaluation of thin layered soils. Two sizes of the CRP are developed for the laboratory and field test. The projected areas of CRP for the laboratory and field tests are $0.78cm^2$ (d: 1.0 cm) and $1.76cm^2$ (d: 1.5 cm), repectively. The length of friction sleeve is designed in consideration of ratio of the projected area to the friction sleeve area. The application tests are carried out by using the artificially prepared thin-layered soils in the laboratory. In addition, the field tests are conducted at the depth of 6 to 15 m in Kwangyang. In the laboratory test, the measured electrical resistivity and cone tip resistance detect the soil layers. Moreover, in the field test the CRP investigates the three thin-layered soils. This study suggests that the CRP may be a useful tool for detecting thin-layered in soft soils.

Evaluation of Preconsolidation Stress Considering Small-Strain Shear Wave Velocity (미소변형 전단파 속도를 고려한 설행압밀하중 산정)

  • Yoon, Hyung-Koo;Lee, Chang-Ho;Kim, Joon-Han;Lee, Jong-Sub
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.5
    • /
    • pp.5-16
    • /
    • 2009
  • Preconsolidation stress is one of the important design parameters in soft soils because the behavior of saturated soft soils changes dramatically at the preconsolidation stress. For the estimation of preconsolidation stress, the global vertical settlement without considering micro strain behavior has been considered. The purpose of this study is to propose and verify a new method called the "shear wave velocity method" for determination of the preconsolidation stress reflecting on particle behavior at the small-strain. In this study, the undisturbed soft soils obtained at Busan, Incheon and Gwangyang in Korea were used. The oedometer cell incoporated with the bender elements is used for the consolidation tests under the $K_0$ condition. The preconsolidation stress determined by the proposed method is compared with that estimated by Casagrande (e-log p'), Sridharan (log (1+e)-log p'), and Onitsuka (In(1+e)-log p') methods. This study suggests that the shear wave velocity method may determine simply the preconsolidation stress with considering the small-strain behavior.

Compressibility and Stiffness Characteristics of Vanishing Mixtures (지반 소실 혼합재의 압축성 및 강성 특성)

  • Truong, Q. Hung;Eom, Yong-Hun;Yoon, Hyung-Koo;Lee, Jong-Sub
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.12
    • /
    • pp.103-111
    • /
    • 2008
  • Soils naturally contain grains of different minerals which may be dissolved under chemical or physical processes. The dissolution leads changes in microstructure of particulate media, such as an increase in local void or permeability, which affects the strength and deformation of soils. This study focuses on the small strain stiffness characteristics of vanishing mixtures, which consist of sand and salt particles at different volume fractions. Experiments are carried out in a conventional oedometer cell (Ko-loading) integrated with bender elements for the measurement of shear waves. Dissolutions of particles are implemented by saturating the mixtures at various confining stresses. Axial deformation and shear waves are recorded after each loading stage and during dissolution process. Experimental results show that after dissolution, the vertical strain and the void ratio increase, while the shear wave velocity and small strain shear modulus decrease. The decrease of the velocity results from the void ratio increase and particle contact decrease. The process monitoring during dissolution of the particles shows that the vertical strain dramatically increases at the beginning of the saturation process and converges after vanishing process finishes, and that the shear wave velocity decreases at the beginning and increases due to the particle reorientation. Specimens prepared by sand and salt particles are proved to be able to provide a valuable insight in macro structural behaviors of the vanishings mixtures.

Characteristics of Rigid-Soft Particle Mixtures with Size Ratio (입자크기비에 따른 강-연성 혼합재의 공학적 특성)

  • Lee, Chang-Ho;Yoon, Hyung-Koo;Kim, Rae-Hyun;Lee, Woo-Jin;Lee, Jong-Sub
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.8
    • /
    • pp.125-135
    • /
    • 2008
  • Rigid-soft particle mixtures, which consist of sand and rubber, are investigated for the understanding of the stress-deformation and elastic moduli. Specimens are prepared with various size ratio sr between sand and rubber particles, and different volumetric sand fraction sf. Small strain shear waves are measured under $K_o$-loading condition incorporated with the stress-deformation test by using oedometer cell with bender elements. The stress-deformation and small strain shear wave characteristics of rigid-soft particle mixtures show the transition from a rigid particle behavior regime to a soft particle behavior regime under fixed size ratio. A sudden rise of $\Lambda$ factor and the maximum value of the $\zeta$ exponent in $G_{max}=\;{\Lambda}({\sigma}'_{o}/kPa)^{\zeta}$ are observed at $sf\;{\approx}\;0.4{\sim}0.6$ regardless of the size ratio sf. Transition mixture shows high sensitivity to confining stress. The volume fraction for the minimum porosity may depend on the applied stress level in the rigid-soft particle mixtures because the soft rubber particles easily distort under load. In this experimental study, the size ratio and volumetric sand fraction are the important factors which determine the behavior of rigid and soft particle mixtures.

Geotechnical Engineering Characteristics of Ulleung Basin Sediment, East Sea (동해, 울릉 분지 심해토의 지반공학특성)

  • Lee, Chang-Ho;Yun, Tae-Sup;J.C., Santamarina;Bahk, Jang-Jun;Lee, Jong-Sub
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.6
    • /
    • pp.17-29
    • /
    • 2009
  • There has been an increase in the investigation of deep sea sediments with a consequent increase in the amount of energy required to undertake these investigations. The geotechnical characteristics of Ulleung Basin sediment are explored by using depressurized specimens following methane production tests carried out on pressured core samples obtained at 2,100 m water depth and 110 m below sea floor. Geotechnical index tests, X-ray diffraction, and scanning electron microscope are conducted to identify the geotechnical index parameters, clay mineralogy, chemical composition, and microstructure of the sediments. Compressibility, and elastic and electromagnetic wave parameters are investigated for two samples by using a multi sensing instrumented oedometer cell. The strength chatracteristics are obtained by the direct shear tests. The dominant clay minerals are mostly kaolinite, illite, chlorite, and calcite. The SEM shows a well-developed flocculated structure of the microfossil. Void ratio, electrical resistivity, real permittivity, conductivity, and shear wave velocity show bi-linear behavior with the effective vertical stress: as the vertical effective stress increases. The friction angle obtained by the direct shear test is about $21^{\circ}$, which is similar to the value observed in the Ulleung Basin sediments. This study shows that the understanding of the behavior acting on the diatomaceous marine sediment is important because it often maintains the useful energy resources such as gas hydrate and so will be the new engineering field in the next generation.

Interfacial Properties of Propylene Oxide Adducted Sodium Laureth Sulfate Anionic Surfactant (프로필렌 옥사이드를 부가한 소듐 라우레스 설페이트 음이온 계면활성제의 계면 특성에 관한 연구)

  • Jeong Min Lee;Ki Ho Park;Hee Dong Shin;Woo Jin Jeong;Jong Choo Lim
    • Applied Chemistry for Engineering
    • /
    • v.34 no.3
    • /
    • pp.264-271
    • /
    • 2023
  • In this study, ASCO SLES-430 surfactant was synthesized by adducting 3 moles of ethylene oxide and 1 mole of propylene oxide to lauryl alcohol followed by a sulfation process, and the structure of the synthesized ASCO SLES-430 was elucidated by performing FT-IR, 1H-NMR and 13C-NMR analyses. Interfacial properties such as critical micelle concentration, static surface tension, emulsification index, and contact angle were measured, and environmental compatibility indices such as oral toxicity and skin irritation were also estimated for ASCO SLES-430. Both results were compared with ASCO SLES-226 and ASCO SLES-328 SLES surfactants possessing 2 moles and 3 moles of ethylene oxide, respectively. In particular, both foaming ability and foam stability were evaluated for ASCO SLES-430 and compared with ASCO SLES-226 and ASCO SLES-328, which have been widely used in detergent products, in order to test the potential applicability of ASCO SLES-430 in detergent product formulation for a small capacity built-in washing machine.

Effects of Electrolyte Cation on Electrochemical Properties of Negative and Positive Electrodes in Aluminum-Air Batteries (알루미늄-공기 전지의 음극 및 양극의 전기화학적 특성에 미치는 전해질 양이온의 영향)

  • Lee, Seunghwan;Yoon, Sungjae;Choi, Weon-Kyung;Baeg, Changhyun;Jeong, Soon-Ki
    • Journal of Convergence for Information Technology
    • /
    • v.12 no.2
    • /
    • pp.134-141
    • /
    • 2022
  • To improve the performance of aluminum-air batteries, it is very important to understand the effect of electrolytes on the electrochemical properties of electrodes. In this study, the effects of electrolyte cations on the electrochemical redox reactions proceeding at the negative and positive electrodes were investigated using electrolytes having the same anion but different cations such as NaCl, LiCl, CaCl2, and ZnCl2. It was confirmed by discharge test, scanning electron microscopy and X-ray diffraction analysis that electrolyte cations affect the discharge potential and specific capacity of the electrode. Precipitates were formed on the surface of the positive electrode by Ca2+ and Zn2+ ions, resulting in degradation of the performance of the positive electrode. In addition, Ca2+ ions passivated the negative electrode and accelerated the performance degradation. This suggests that the positive ions of the electrolyte have different effects on the electrochemical performance of the positive and negative electrodes.

GIS-based Debris Flow Risk Assessment (GIS 기반 토석류 위험도 평가)

  • Lee, Hanna;Kim, Gihong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.1
    • /
    • pp.139-147
    • /
    • 2023
  • As heavy precipitation rates have increased due to climate change, the risk of landslides has also become greater. Studies in the field of disaster risk assessment predominantly focus on evaluating intrinsic importance represented by the use or role of facilities. This work, however, focused on evaluating risks according to the external conditions of facilities, which were presented via debris flow simulation. A random walk model (RWM) was partially improved and used for the debris flow simulation. The existing RWM algorithm contained the problem of the simulation results being overly concentrated on the maximum slope line. To improve the model, the center cell height was adjusted and the inertia application method was modified. Facility information was collected from a digital topographic map layer. The risk level of each object was evaluated by combining the simulation result and the digital topographic map layer. A risk assessment technique suitable for the polygon and polyline layers was applied, respectively. Finally, by combining the evaluated risk with the attribute table of the layer, a system was prepared that could create a list of objects expected to be damaged, derive various statistics, and express the risk of each facility on a map. In short, we used an easy-to-understand simulation algorithm and proposed a technique to express detailed risk information on a map. This work will aid in the user-friendly development of a debris flow risk assessment system.

A Modified grid-based KIneMatic wave STOrm Runoff Model (ModKIMSTORM) (I) - Theory and Model - (격자기반 운동파 강우유출모형 KIMSTORM의 개선(I) - 이론 및 모형 -)

  • Jung, In Kyun;Lee, Mi Seon;Park, Jong Yoon;Kim, Seong Joon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6B
    • /
    • pp.697-707
    • /
    • 2008
  • The grid-based KIneMatic wave STOrm Runoff Model (KIMSTORM) by Kim (1998) predicts the temporal variation and spatial distribution of overland flow, subsurface flow and stream flow in a watershed. The model programmed with C++ language on Unix operating system adopts single flowpath algorithm for water balance simulation of flow at each grid element. In this study, we attempted to improve the model by converting the code into FORTRAN 90 on MS Windows operating system and named as ModKIMSTORM. The improved functions are the addition of GAML (Green-Ampt & Mein-Larson) infiltration model, control of paddy runoff rate by flow depth and Manning's roughness coefficient, addition of baseflow layer, treatment of both spatial and point rainfall data, development of the pre- and post-processor, and development of automatic model evaluation function using five evaluation criteria (Pearson's coefficient of determination, Nash and Sutcliffe model efficiency, the deviation of runoff volume, relative error of the peak runoff rate, and absolute error of the time to peak runoff). The modified model adopts Shell Sort algorithm to enhance the computational performance. Input data formats are accepted as raster and MS Excel, and model outputs viz. soil moisture, discharge, flow depth and velocity are generated as BSQ, ASCII grid, binary grid and raster formats.