• Title/Summary/Keyword: 셀

Search Result 5,378, Processing Time 0.035 seconds

Development trends of Solar cell technologies for Small satellite (소형위성용 태양전지 개발 동향 및 발전 방향)

  • Choi, Jun Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.5
    • /
    • pp.310-316
    • /
    • 2021
  • Conventional satellites are generally large satellites that are multi-functional and have high performance. However, small satellites have been gradually drawing attention since the recent development of lightweight and integrated electric, electronic, and optical technologies. As the size and weight of a satellite decrease, the barrier to satellite development is becoming lower due to the cost of manufacture and cheaper launch. However, solar panels are essential for the power supply of satellites but have limitations in miniaturization and weight reduction because they require a large surface area to be efficiently exposed to sunlight. Space solar cells must be manufactured in consideration of various space environments such as spacecraft and environments with solar thermal temperatures. It is necessary to study structural materials for lightweight and high-efficiency solar cells by applying an unfolding mechanism that optimizes the surface-to-volume ratio. Currently, most products are developed and operated as solar cell panels for space applications with a triple-junction structure of InGaP/GaAs/Ge materials for high efficiency. Furthermore, multi-layered junctions have been studied for ultra-high-efficiency solar cells. Flexible thin-film solar cells and organic-inorganic hybrid solar cells are advantageous for material weight reduction and are attracting attention as next-generation solar cells for small satellites.

A Study on Stress-Strain Behaviour of Geotube Structure Filled with Silty Sand Under Low Confining Pressure by Triaxial Compression Test (실트질 모래가 충진된 지오튜브 구조체의 저 등방조건에서 삼축압축시험에 의한 응력-변위 거동 연구)

  • Hyeong-Joo, Kim;Tae-Woong, Park;Ki-Hong, Kim
    • Journal of the Korean Geosynthetics Society
    • /
    • v.21 no.4
    • /
    • pp.69-78
    • /
    • 2022
  • Geotextile tubes are widely used to prevent erosion in coastal areas and to replace the backfill for shore slopes in the reclamation of land using dredged soil. In this study, The triaxial confining pressures were chosen as 10kPa, 50kPa, or 100kPa for the specimens reinforced with geotextile considering the condition in the site. The strain behavior under various compressive stresses was then identified. At strains 0% to 7%, the stress-strain behavior was the same due to the effect of initial strain hardening, in which the force was exerted according to the relaxation of the geotextile regardless of the confining pressure (≤100kPa). At strains of 7% or more, the specimen with the small confining pressure had smaller deformation under load, which increases the tensile resistance provided by the reinforcing geotextile. Brittle fracture was then observed due to strain softening and the deviator stress abruptly decreased. This is different from the phenomenon in which the shear strength increases as the confining pressure increases in general triaxial compression tests. In the geoxtile-confined tests, geotextiles are primarily subjected to tensile displacement. Thereafter, the modulus of elasticity increases rapidly, which exhibits the elastic behavior of the geotextile.

A Study of the Transdermal Permeation of Lotion Formulations Containing Angelica gigas Nakai Extracts in Franz Diffusion Cells (Franz diffusion cell을 이용한 참당귀 추출물 함유한 로션제형의 피부 투과 연구)

  • Kim, Kang Min
    • Journal of Life Science
    • /
    • v.31 no.11
    • /
    • pp.1004-1009
    • /
    • 2021
  • Angelica gigas Nakai (AGN) has been used in Korean herbal medicine for various pharmacological activities, such as to create antioxidant and skin whitening effects. Decursin and decursinol angelate of AGN extracts can be used as potential active drugs and cosmetic ingredients. This study investigated the possibility of topical delivery of AGN extracts using a manufactured emulsion system. Lotion was formulated by using Tefose® and paraffin for the oil phase, Kolliphor RH 40 for the surfactant and solubilizing agent-which showed high solubility in water (0.82 mg/ml)-and a water phase with a carbomer. In vitro skin permeation of decursin and decursinol angelate was determined using a Strat-M® membrane in Franz diffusion cells. Lotion samples as the experimental group (248.08±19.72 ug/cm2) significantly increased the permeation of decursin and decursinol angelate for up to 24 hr compared to the control group (119.18±19.23 ug/cm2). The permeability was also characterized by the flux (penetration rates) and Kp (permeability coefficient) values. The experimental group (17.20±1.23 ug/h/cm2 and 5.73±1.39 cm/h*10-3) had higher flux and Kp than the control group (8.22±1.24 ug/h/cm2 and 2.74±0.51 cm/h*10-3). Lotion with decursin and decursinol angelate of AGN extracts could be used for the topical application of drug and cosmetic products.

An Exact Division Algorithm for Change-Making Problem (거스름돈 만들기 문제의 정확한 나눗셈 알고리즘)

  • Lee, Sang-Un
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.3
    • /
    • pp.185-191
    • /
    • 2022
  • This paper proposed a division algorithm of performance complexity $O{\frac{n(n+1)}{2}}$ for a change-making problem(CMP) in which polynomial time algorithms are not known as NP-hard problem. CMP seeks to minimize the sum of the xj number of coins exchanged when a given amount of money C is exchanged for cj,j=1,2,⋯,n coins. Known polynomial algorithms for CMPs are greedy algorithms(GA), divide-and-conquer (DC), and dynamic programming(DP). The optimal solution can be obtained by DP of O(nC), and in general, when given C>2n, the performance complexity tends to increase exponentially, so it cannot be called a polynomial algorithm. This paper proposes a simple algorithm that calculates quotient by dividing upper triangular matrices and main diagonal for k×n matrices in which only j columns are placed in descending order of cj of n for cj ≤ C and i rows are placed k excluding all the dividers in cj. The application of the proposed algorithm to 39 benchmarking experimental data of various types showed that the optimal solution could be obtained quickly and accurately with only a calculator.

Study of Sound Art Curating (사운드아트 큐레이팅 연구)

  • Lim, Shan
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.5
    • /
    • pp.171-176
    • /
    • 2022
  • This paper examines the historical meaning and value of sound art curating as a key type of interdisciplinary and convergence art practice that has been unfolding since the mid-20th century. Accordingly, this paper summarizes the developmental process from the beginning of 'sound art' to the present, but examines the context of visual art in which the material 'sound' functioned in chronological order, and focuses on curating cases of major sound art exhibitions. The purpose of this study is to analyze the impact and contemporary significance of the provided aesthetic experience. To this end, the text is divided into three sections and developed. The first section recognizes that the late 19th century futurist and Dadaist sound poetry, followed by Marcel Duchamp's 1913 attempt to combine musical score with visual art, had a profound influence on the visual music of avant-garde composer John Cage. This explains why this background caused the emergence of exhibitions dealing with 'sound' as a new medium. The second section explains that in the 1970s, sound as an artistic medium played a role in reflecting the critical relationship with the exhibition space dominated by visuality. In the third section, we analyze the curatorial methodology that allows the audience to experience sound as if it were a visual object within the organization of the exhibition hall from the 1980s to the present. Through this process, this paper critically treats the historical practice of customizing the perceptual structure in the exhibition hall, and considers the meaningful methodology of sound art curating considering the role of sound full of vitality in the contemporary art scene.

Electrochemical Behaviors of Graphite/LiNi0.6Co0.2Mn0.2O2 Cells during Overdischarge (흑연과 LiNi0.6Co0.2Mn0.2O2로 구성된 완전지의 과방전 중 전기화학적 거동분석)

  • Bong Jin Kim;Geonwoo Yoon;Inje Song;Ji Heon Ryu
    • Journal of the Korean Electrochemical Society
    • /
    • v.26 no.1
    • /
    • pp.11-18
    • /
    • 2023
  • As the use of lithium-ion secondary batteries is rapidly increasing due to the rapid growth of the electric vehicle market, the disposal and recycling of spent batteries after use has been raised as a serious problem. Since stored energy must be removed in order to recycle the spent batteries, an effective discharging process is required. In this study, graphite and NCM622 were used as active materials to manufacture coin-type half cells and full cells, and the electrochemical behavior occurring during overdischarge was analyzed. When the positive and negative electrodes are overdischarged respectively using a half-cell, a conversion reaction in which transition metal oxide is reduced to metal occurs first in the positive electrode, and a side reaction in which Cu, the current collector, is corroded following decomposition of the SEI film occurs in the negative electrode. In addition, a side reaction during overdischarge is difficult to occur because a large polarization at the initial stage is required. When the full cell is overdischarged, the cell reaches 0 V and the overdischarge ends with almost no side reaction due to this large polarization. However, if the full cell whose capacity is degraded due to the cycle is overdischarged, corrosion of the Cu current collector occurs in the negative electrode. Therefore, cycled cell requires an appropriate treatment process because its electrochemical behavior during overdischarge is different from that of a fresh cell.

Liquid Crystal Driving of Transparent Electrode-Alignment Layer Multifunctional Thin Film by Nano-Wrinkle Imprinting of PEDOT:PSS/MWNT Nanocomposite (PEDOT:PSS/MWNT 나노복합체의 나노주름 임프린팅을 통한 투명전극-배향막 복합 기능 박막의 액정 구동)

  • Jong In Jang;Hae-Chang Jeong
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.1
    • /
    • pp.8-17
    • /
    • 2023
  • In conventional liquid crystal display(LCD) manufacturing process, Indium Tin Oxide(ITO) as transparent electrode and rubbing process of polyimide as alignment layer are essential process to apply electric field and align liquid crystal molecules. However, there are some limits that deposition of ITO requires high vacuum state, and rubbing process might damage the device with tribolectric discharge. In this paper, we made nanocomposite with PEDOT:PSS and MWNT to replace ITO and constructed alignment layer by nano imprint lithography with nano wrinkle pattern, to replace rubbing process. These replacement made that only one PEDOT:PSS/MWNT film can function as two layers of ITO and polyimide alignment layer, which means simplification of process. Transferred nano wrinkle patterns functioned well as alignment layer, and we found out lowered threshold voltage and shortened response time as MWNT content increase, which is related to increment of electric conductivity of the film. Through this study, it may able to contribute to process simplification, reducing process cost, and suggesting a solution to disadvantage of rubbing process.

Experimental Study on the Effect of Degree of Saturation on the Electrical Conductivity of Soils (포화도에 따른 흙의 전기전도도 변화에 대한 실험적 연구)

  • Ko, Hyojung;Choo, Hyunwook
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.8
    • /
    • pp.29-39
    • /
    • 2023
  • The degree of saturation determines the connectivity of void space and the particle surface. Thus, it greatly affects the electrical conductivity of soils. This study aimed to analyze the electrical conductivities of coarse grains with a high relevance of pore water conduction and fine grains with a high relevance of surface conduction based on the degree of saturation. It also aimed to express the electrical conductivity of unsaturated soils as a combination of surface and pore water conductions using the modified Archie's equation. Samples were prepared in a plastic cell equipped with four electrodes, and the electrical conductivity was measured based on the porosity at various degrees of saturation (40%~100%). The results demonstrate that Archie's equation can be used to express the electrical conductivity of coarse grains, with a saturation exponent of ~1.93 regardless of the pore water conductivity. However, the saturation exponent of fine grains varied considerably with pore water concentration. This variation can be attributed to the relative magnitude of surface conduction with respect to the electrical conductivity of soils at different pore water concentrations. Thus, the degree of saturation has varying effects on pore water conduction and surface conduction. Therefore, different saturation exponents must be used for pore water conduction and surface conduction to predict the electrical conductivity of unsaturated soils using the modified Archie's equation.

Early Prediction of Fine Dust Concentration in Seoul using Weather and Fine Dust Information (기상 및 미세먼지 정보를 활용한 서울시의 미세먼지 농도 조기 예측)

  • HanJoo Lee;Minkyu Jee;Hakdong Kim;Taeheul Jun;Cheongwon Kim
    • Journal of Broadcast Engineering
    • /
    • v.28 no.3
    • /
    • pp.285-292
    • /
    • 2023
  • Recently, the impact of fine dust on health has become a major topic. Fine dust is dangerous because it can penetrate the body and affect the respiratory system, without being filtered out by the mucous membrane in the nose. Since fine dust is directly related to the industry, it is practically impossible to completely remove it. Therefore, if the concentration of fine dust can be predicted in advance, pre-emptive measures can be taken to minimize its impact on the human body. Fine dust can travel over 600km in a day, so it not only affects neighboring areas, but also distant regions. In this paper, wind direction and speed data and a time series prediction model were used to predict the concentration of fine dust in Seoul, and the correlation between the concentration of fine dust in Seoul and the concentration in each region was confirmed. In addition, predictions were made using the concentration of fine dust in each region and in Seoul. The lowest MAE (mean absolute error) in the prediction results was 12.13, which was about 15.17% better than the MAE of 14.3 presented in previous studies.

Prediction of Chemical Acceleration Durability Time of Polymer Membrane in Polymer Electrolyte Membrane Fuel Cells (고분자 전해질 연료전지에서 고분자막의 화학적 가속 내구 시간 예측)

  • Sohyeong Oh;Donggeun Yoo;Sunggi Jung;Jihong Jeong;Kwonpil Park
    • Korean Chemical Engineering Research
    • /
    • v.61 no.1
    • /
    • pp.26-31
    • /
    • 2023
  • For durability improvement of polymer electrolyte membrane fuel cell (PEMFC) polymer membrane, accelerated durability evaluation methods that can evaluate durability in a short time have been researched and developed. However, the lifespan of fuel cells for large commercial vehicles such as trucks and buses is more than three times that of passenger cars, and the chemical accelerated stress test (AST) time is also longer, reaching 1,500 hours or more. Therefore, in this study, as a method to evaluate the chemical durability of a membrane within a short time, it was examined whether the durability could be predicted by the pristine membrane characteristics. Hydrogen crossover current density (HCCD) and short resistance (SR) were estimated as initial characteristics, and AST time was predicted through the Fenton experiment, which was possible as an out-of-cell experiment for 3 hours. As the HCCD and fluoride ion emission concentration increased, the AST time tended to be linearly shortened, but there was a deviation (R2 ≒0.65). When the SR decreased, the AST time showed a linear increase, and the accuracy was high (R2 =0.93), so the AST time could be predicted with the initial SR of the membrane.