• Title/Summary/Keyword: 센싱 커버리지 시뮬레이션

Search Result 8, Processing Time 0.029 seconds

Coverage Maximization in Environment Monitoring using Mobile Sensor Nodes (이동센서노드를 이용한 환경감시 시스템에서의 커버리지 최대화)

  • Van Le, Duc;Yoon, Seokhoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.05a
    • /
    • pp.116-119
    • /
    • 2015
  • In this paper we propose an algorithm for environment monitoring using multiple mobile sensor (MS) nodes. Our focus is on maximizing sensing coverage of a group of MS nodes for monitoring a phenomenon in an unknown and open area over time. In the proposed algorithm, MS nodes are iteratively relocated to new positions at which a higher sensing coverage can be obtained. We formulated an integer linear programming (ILP) optimization problem to find the optimal positions for MS nodes with the objective of coverage maximization. The performance evaluation was performed to confirm that the proposed algorithm can enable MS nodes to relocate to high interest positions, and obtain a maximum sensing coverage.

  • PDF

An Active Node Selection Scheme based on Local Density in Wireless Sensor Networks (무선 센서 네트워크에서 지역밀집도를 고려한 활성노드 선택기법)

  • Kim, Jeong-Sahm;Ryu, Jeong-Pil;Han, Ki-Jun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.10
    • /
    • pp.37-46
    • /
    • 2007
  • In wireless sensor networks, one of the most important goals of designing protocols is to extend the network lifetime. A node has lots of duplication in sensing and communication range with surrounding nodes after many of nodes are randomly scattered. Such a heavy duplication overhead affects on the network lifetime seriously so usually all nodes need not activated constantly to carry out sensing and communication operation. One of the optimal methods of prolonging the network lifetime is finding the number of surrounding nodes necessary to maintain the network coverage and connectivity. It has been studied till the current date in wireless networks. If the neighbor necessary can be acquired to satisfy the probability using the ideal number of neighbors necessary and the acquired number of neighbors m to guarantee network coverage and connectivity. We use the result that F. Xue et al and S. Song et al derive previously in finding the neighbor necessary to guarantee the network connectivity and cany out the computer simulation to verify the necessary number. We present that our scheme satisfy the network coverage and connectivity. We present the simulation results compared with constant probability scheme through computer simulation.

A Scheduling Scheme under Probabilistic Model (확률 모델 기반의 스케줄링 기법)

  • Kim, Chan-Myung;Kang, In-Seok;Han, Youn-Hee
    • Annual Conference of KIPS
    • /
    • 2012.04a
    • /
    • pp.556-559
    • /
    • 2012
  • CTC(Connected Target Coverage) 문제는 주어진 전체 타겟을 관측하고 관측한 데이터를 싱크노드까지 전송하는데 관여하는 센서집합의 개수를 최대화하여 네트워크 수명을 최대화하는 문제이다. 본 논문은 확률 센싱 및 연결성 모델을 기반으로 CTC문제에 접근한다. CTC문제를 해결하기 위해 휴리스틱 알고리즘인 CWGC-PM 알고리즘을 제안하고 시뮬레이션을 통해 알고리즘이 CTC문제를 해결하기에 적합함을 보인다. 또한 확률모델이 다양한 커버리지 및 연결성 요구조건에 적용될 수 있음을 보인다.

Virtual Force (VF)-based Cooperative Monitoring Network using Multiple UAVs (다수의 공중무인기를 이용한 가상력 기반 협력 감시 네트워크 구성)

  • Chun, Jeong-Myong;Yoon, Seok-Hoon
    • Annual Conference of KIPS
    • /
    • 2015.10a
    • /
    • pp.507-509
    • /
    • 2015
  • 본 논문에서는 다수의 공중무인기로 구성된 이동센서네트워크를 이용하여 유해 지역 또는 인력 접근이 제한된 지역 감시를 고려한다. 공중무인기는 기존 무인기와 달리 이동 제약이 적으며 기동성이 뛰어나 다양한 분야에서 활용이 가능하다. 그러나 다수의 공중무인기를 이용하여 센서네트워크 구축할 경우 지상 관제센터의 한정된 자원으로 인해 개별 공중무인기 제어에 한계가 있다. 따라서 최소한의 중앙 제어를 통한 신속한 네트워크 구축, 관심 지역으로 위치 이동 그리고 자율적 협업을 통한 센싱커버리지 최대화를 위한 알고리즘이 요구된다. 본 논문에서는 공중무인기의 제한된 센싱 거리와 통신 거리를 바탕으로 다수의 공중무인기를 이용한 가상력 기반 협력 감시 네트워크 구성을 고려한다. 또한 시뮬레이션을 통해 관리자의 별도의 제어 없이 다수 공중무인기의 자율 감시 네트워크를 구축과 지역 감시가 가능함을 보인다.

A Scheduling Scheme Considering Multiple-Target Coverage and Connectivity in Wireless Sensor Networks (무선 센서 네트워크에서 다중 타겟 커버리지와 연결성을 고려한 스케줄링 기법)

  • Kim, Yong-Hwan;Han, Youn-Hee;Park, Chan-Yeol
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.3B
    • /
    • pp.453-461
    • /
    • 2010
  • A critical issue in wireless sensor networks is an energy-efficiency since the sensor batteries have limited energy power and, in most cases, are not rechargeable. The most practical manner relate to this issue is to use a node wake-up scheduling protocol that some sensor nodes stay active to provide sensing service, while the others are inactive for conserving their energy. Especially, CTC (Connected Target Coverage) problem has been considered as a representative energy-efficiency problem considering connectivity as well as target coverage. In this paper, we propose a new energy consumption model considering multiple-targets and create a new problem, CMTC (Connected Multiple-Target Coverage) problem, of which objective is to maximize the network lifetime based on the energy consumption model. Also, we present SPT (Shortest Path based on Targets)-Greedy algorithm to solve the problem. Our simulation results show that SPT-Greedy algorithm performs much better than previous algorithm in terms of the network lifetime.

Cellular-Automata Based Node Scheduling Scheme for Wireless Sensor Networks (무선 센서 네트워크를 위한 셀룰러 오토마타 기반의 노드 스케줄링 제어)

  • Byun, Heejung;Shon, Sugook
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39B no.10
    • /
    • pp.708-714
    • /
    • 2014
  • Wireless sensor networks (WSNs) generally consist of densely deployed sensor nodes that depend on batteries for energy. Having a large number of densely deployed sensor nodes causes energy waste and high redundancy in sensor data transmissions. The problems of power limitation and high redundancy in sensing coverage can be solved by appropriate scheduling of node activity among sensor nodes. In this paper, we propose a cellular automata based node scheduling algorithm for prolonging network lifetime with a balance of energy savings among nodes while achieving high coverage quality. Based on a cellular automata framework, we propose a new mathematical model for the node scheduling algorithm. The proposed algorithm uses local interaction based on environmental state signaling for making scheduling decisions. We analyze the system behavior and derive steady states of the proposed system. Simulation results show that the proposed algorithm outperforms existing protocols by providing energy balance with significant energy savings while maintaining sensing coverage quality.

Communication Protocol for Mobile Sensor Networks with Continuous Mobility (지속적인 이동성을 갖는 이동 센서네트워크를 위한 통신 프로토콜)

  • Kim, Hyoung-Jin;Kim, Lae-Young;Song, Joo-Seok
    • The KIPS Transactions:PartC
    • /
    • v.14C no.2
    • /
    • pp.139-146
    • /
    • 2007
  • Mobile Sensor Network(MSN) is actively studied due to the advent of mobile sensors such as Robomote and Robotic Sensor Agents(RSAs), However, existing studies on MSN have mainly focused on coverage hole problem which occurs in Stationary Sensor Network(SSN). To address coverage hole problem, these studies make mobile sensors move temporarily so that they do not make the best use of the mobility of mobile sensors, Thus, a mechanism utilizing the continuous movement of mobile sensors is proposed to improve the network coverage performance. However, this mechanism is presently immature and does not explain how to make routing path and send data from mobile sensors to a sink node, Therefore, to efficiently make routing path and send data from mobile sensors to a sink node, we propose a communication protocol for mobile sensor network where mobile sensors continuously move. The proposed protocol deploys not only mobile sensors but also stationary sensors which send sensing data to a sink node instead of mobile sensors. Simulation results show that the proposed protocol improves the performance in terms of network coverage and traffic overhead, compared to conventional SSN protocols.