Journal of Korea Entertainment Industry Association
/
v.13
no.8
/
pp.335-343
/
2019
Healthy living is an essential element of human happiness. Quality eating provides the basis for life, and the health of livestock, which provides meat and dairy products, has a direct impact on human health. In the case of calves, diarrhea is the cause of all diseases.In this paper, we use a sensor to measure calf 's biometric data to diagnose calf diarrhea. The collected biometric data is subjected to a preprocessing process for use as meaningful information. We measure calf birth history and calf biometrics. The ontology is constructed by inputting environmental information of housing and biochemistry, immunity, and measurement information of human body for disease management. We will build a knowledge base for predicting calf diarrhea by predicting calf diarrhea through logical reasoning. Predict diarrhea with the knowledge base on the name of the disease, cause, timing and symptoms of livestock diseases. These knowledge bases can be expressed as domain ontologies for parent ontology and prediction, and as a result, treatment and prevention methods can be suggested.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2022.10a
/
pp.213-215
/
2022
Recently, deep learning technology that processes images has been widely used in fire detection, autonomous driving, and defective product detection. In particular, in order to determine whether a product is contaminated or not, it can be identified through the contaminants passed from the existing sensor data, but technologies for recognizing cracks in products or contaminants themselves as images are being actively studied in various fields. In this paper, a system for classifying uncontaminated normal cups and contaminated cups through images was designed and implemented. The image was analyzed using an open image and a photographed image, and the image was analyzed by extracting the upper part of the cup image using Google Objectron for 3D object recognition. Through this study, it is thought that it will be used in various ways for research that can extract the contamination level of products required in the hygiene field based on images.
Manh-Tuan Ngo;Changhyun Kim;Minh-Chau Dinh;Minwon Park
Journal of Korea Society of Industrial Information Systems
/
v.28
no.5
/
pp.77-87
/
2023
Wind turbines playing a critical role in renewable energy generation, accurately assessing their operational status is crucial for maximizing energy production and minimizing downtime. This study conducts a comparative analysis of different neural network models for wind turbine condition diagnosis, evaluating their effectiveness using a dataset containing sensor measurements and historical turbine data. The study utilized supervisory control and data acquisition data, collected from 2 MW doubly-fed induction generator-based wind turbine system (Model HQ2000), for the analysis. Various neural network models such as artificial neural network, long short-term memory, and recurrent neural network were built, considering factors like activation function and hidden layers. Symmetric mean absolute percentage error were used to evaluate the performance of the models. Based on the evaluation, conclusions were drawn regarding the relative effectiveness of the neural network models for wind turbine condition diagnosis. The research results guide model selection for wind turbine condition diagnosis, contributing to improved reliability and efficiency through advanced neural network-based techniques and identifying future research directions for further advancements.
Journal of Korea Society of Industrial Information Systems
/
v.28
no.6
/
pp.99-105
/
2023
Submarines, which require a high degree of survivability, are among the most critical combat weapon systems in military strategic assets. Conventional submarines need air to operate their propulsion systems. Exhaust gases released into the water during snorkel navigation heat the surrounding fluid, producing a temperature wake. This wake, in turn, reduces the submarine's survivability. In this study, we conducted a preliminary experiment on the temperature traces formed by an underwater submarine's waste discharge. For this purpose, we collected propulsion system and navigation condition data from domestically introduced submarines and developed an experimental system to measure the temperature traces. As a result, we observed that high-temperature bubbles injected into the tank broke down into smaller sizes, and their temperature dropped to levels similar to the surrounding fluid. This observation was confirmed using a thermocouple sensor. Consequently, the thermal imaging system designed to measure the temperature trace of the water's surface did not detect any significant temperature traces.
VaRTM(Vacuum assisted resin transfer molding) and VAP(Vacuum assisted process) processes are a type of RTM(Resin transfer molding) process, and are typical out-of-autoclave (OOA) processes that can manufacture large structures at low cost. In this paper, a resin filling test was conducted to compare the VaRTM and VAP processes, and the filling process and dimensional stability were compared. In addition, an analysis method to simulate the filling process was developed, and a dielectric sensor was used to detect the flow front of the resin, which was compared with the analysis results. From the resin filling test, the total filling time of the composite plate was measured to be 48 minutes for the VAP process and 145 minutes for the VaRTM process, and the filling time by the VAP process was reduced by about 67%. In addition, it was confirmed that the VAP process was superior to the VaRTM process in the thickness control ability and uniformity of the composite plate.
This paper is a study to develop a deep neural network (DNN) blood glucose prediction model based on heart rate (HR) and heart rate variability (HRV) data measured by PPG-based sensors. MLP deep learning consists of an input layer, a hidden layer, and an output layer with 11 independent variables. The learning results of the blood glucose prediction model are MAE=0.3781, MSE=0.8518, and RMSE=0.9229, and the coefficient of determination (R2) is 0.9994. The study was able to verify the feasibility of glycemic control using non-blood vital signs using PPG-based digital devices. In conclusion, a standardized method of acquiring and interpreting PPG-based vital signs, a large data set for deep learning, and a study to demonstrate the accuracy of the method may provide convenience and an alternative method for blood glucose management in dogs.
Jae-Hyuck Cha;Chan-Gook Park;Seong-Yun Cho;Min-Su Jo;Chan-Ju Park
The Journal of the Korea institute of electronic communication sciences
/
v.19
no.2
/
pp.445-452
/
2024
This paper analyzes the navigation error for each rotational motion in order to design an optimal rotation sequence, which is a key technology in the rotational inertial navigation. Rotational inertial navigation system is designed to cancel out navigation errors caused by inertial sensor errors by periodically rotating the inertial measurement unit. A properly sequenced rotational motion cancels out the maximum amount of navigation error and is known as an optimal rotation sequence. To design such an optimal turning procedure, this paper identifies the feasible rotational motions that can be implemented in a rotational inertial navigation system and analyzes the navigation error introduced by each rotational motion. In addition, by analyzing the characteristics of the navigation error generated during a rotation sequence in combination, this paper presents the conditions for designing an optimal rotation sequence.
Journal of The Korean Association For Science Education
/
v.28
no.1
/
pp.67-74
/
2008
The purpose of this study was to investigate the effects of an MBL instrument in laboratory execution by analyzing an experimental time and student to student interactions in the MBL and traditional method of the acid-base titration experiment. The MBL method used a conductivity sensor and the traditional method used a current meter on the HCl/NaOH titrations. In comparison of the two methods, the traditional method required more time than the MBL and most of the extra time were used in the execution. In the execution, the MBL method showed more numbers of student to student interaction and higher level of verbal interaction than the traditional method.
As the importance of software and artificial education is emphasized on the digital transformation era, various educational materials are being developed and distributed. To achieve the purpose of software education, various software education programs suitable for school settings need to be provided. In this paper, we developed a software education program using self-driving that can be applied to secondary school software education and applied it to secondary school students. The developed software education program is a physical computing program consisting of various motion control programs such as object detection, line tracing using various sensors, focusing on experience and practice. As a result of the survey, students' attitudes and career orientation toward software and artificial intelligence, and satisfaction with software education were over 90%, and satisfaction with the proposed program was over 95%.
In this paper, we proposes real-time operating system based PCM encoder for telemetry system that must transmit frames within a set time. In the case of large aircraft, the complexity of the system is increasing because a lot of state information is measured from each sensor and peripheral device. In addition, as the amount measurement data increases, the role of PCM encoder to transmit frames within a set time is becoming important. Existing encoder is inflexible when changing specifications or implementing additional features. Therefore, a design is needed to supplement this. We propose a PCM encoder design applying uC/OS-II. In order to confirm the validity, a simulation was performed to measure the execution time of the task to confirm the performance.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.