• Title/Summary/Keyword: 센서 검증

Search Result 2,118, Processing Time 0.028 seconds

Study for Prediction of Contact Forces between Wheel and Rail Using Vibrational Transfer Function of the Scaled Squeal Noise Test Rig (축소 스킬소음 시험장치의 진동전달특성을 이용한 차륜/레일의 접촉력 예측에 관한 연구)

  • Lee, Junheon;Kim, Jiyong;Ji, Eun;Kim, Daeyong;Kim, Kwanju
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.1
    • /
    • pp.20-28
    • /
    • 2016
  • Curved squeal noise may result when railway vehicles run on curved tracks. Contact between the wheels and the rails causes a stick-slip phenomenon, which generates squeal noise. In order to identify the mechanism of the squeal noise systematically, a scaled test rig has been fabricated. Knowledge of the contact forces between the wheels and the rail rollers is essential for investigating the squeal noise characteristics; however, it is difficult to measure there contact force. In this study, contact forces have been calculated indirectly according to the modal behavior of the subframe that supports the rail roller and the responses at specific positions of that subframe. In order to verify the estimated contact forces, the displacements at the contact points between the wheels and rail rollers have been calculated from the estimated forces; the resulting values have been compared with the measured displacement values. The SPL at the specific location has been calculated using the estimated contact forces and this also has been compared with the SPL, measured in a semi-anechoic chamber. The comparisons in displacements and SPLs show good correlation.

Development of On-axis Raman Lidar System for Remotely Measuring Hydrogen Gas at Long Distance (원거리 수소 가스 원격 계측을 위한 On-axis 라만 라이다 장치 개발)

  • Choi, In Young;Baik, Sung Hoon;Lim, Jae Young;Cha, Jung Ho;Kim, Jin Ho
    • Korean Journal of Optics and Photonics
    • /
    • v.29 no.3
    • /
    • pp.119-125
    • /
    • 2018
  • Hydrogen gas is an important and promising energy resource that has no emissions of pollutants during power generation. However, hydrogen gas is very dangerous because it is colorless, odorless, highly flammable, and explosive at low concentration. Conventional techniques for hydrogen gas detection are very difficult for measuring the hydrogen gas distribution at long distances, because they sample the gas to measure its concentration. Raman lidar is one of the techniques for remotely detecting hydrogen gas and measuring the range of the hydrogen gas distribution. A Raman lidar system with an on-axis optical receiver was developed to improve the range of hydrogen gas detection at long distance. To verify the accuracy and improvement in the range of detecting the hydrogen gas, experiments measuring the hydrogen gas concentration are carried out using the developed on-axis Raman lidar system and a gas chamber, to prevent explosion of the hydrogen gas. As a result, our developed on-axis Raman lidar system can measure a minimum hydrogen gas concentration of 0.66 volume percent at a distance of 50 m.

Application of Automatic Stormwater Monitoring System and SWMM Model for Estimation of Urban Pollutant Loading During Storm Events (빗물 자동모니터링장치와 SWMM 모델을 이용한 강우시 도시지역 오염부하량 예측에 관한 연구)

  • Seo, Dongil;Fang, Tiehu
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.6
    • /
    • pp.373-381
    • /
    • 2012
  • An automatic flow and water quality monitoring system was applied to estimate pollutant loads to an urban stream during storm events in DTV (Daeduk Techno Valley), Daejeon, Korea. The monitoring system consists of rainfall gage, ultrasonic water level meter, water quality sensors for DO, temperature, pH, conductivity, turbidity and automatic water sampler for further laboratory analysis. All data are transmitted through on-line system and the monitoring system is designed to be controlled manually in the field and remotely from laboratory computer. Flow rates were verified with field measurements during storm events and showed good agreements. Automatic sampler was used to collect real time samples and analyzed for BOD, COD, TN, TP, SS and other pollutant concentrations in the laboratory. SWMM (Storm Water Management Model) urban watershed model was applied and calibrated using the observed flow and water quality data for the study area. While flow modeling results showed good agreement for all events, water quality modeling results showed variable levels of agreement. These results indicate that current options in the SWMM model to predict pollutant build up and wash-off effects are not sufficient to satisfy modeling of all the rainfall events under study and thus need further modification. This study showed the automatic monitoring system can be used to provide data to assist further refinement of modeling accuracy. This automatic stormwater monitoring and modeling system can be used to develop basin scale water quality management strategies of urban streams in storm events.

A Regression-Based Estimation of Strain Distribution for Safety Monitoring of the Steel Girder Subjected to Uncertain Loads (불확실한 하중을 받는 강재 보 구조물 안전도 모니터링을 위한 변형률 분포의 회귀 분석적 추정)

  • Lee, Ji Hoon;Choi, Se Woon;Park, Hyo Seon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.2
    • /
    • pp.10-20
    • /
    • 2013
  • To evaluate the safety of a beam structure, strains are measured as an indicator of structural states. However, unless strain sensors are installed exactly on where maximum or other representative strains occur, the techniques by which rational assessment through measured strains is accomplished are required. Thus, this study suggests a process to estimate strain distribution on the steel beam from discrete strains measured by sensors. In the presented technique, the targeted beam is regarded to be subjected to unknown loads so that applicability is enhanced. Final strain distribution is given as form of a function after regression analysis. To verify the performance of estimation, a bending test for steel beam on which distributed and concentrated loads simultaneously act is conducted. From the comparison between estimated and directly measured strains in the test, the curve of strain distribution and the strain at arbitrary location could be predicted within maximum relative error 3.32% and maximum absolute error of $2.32{\mu}{\varepsilon}$, respectively. Thus reliable and practical monitoring is expected to apply effectively for the steel beam structure.

Design and Implementation of the Converged Platform for Geospaital and Maritime Information Service based on S-100 Standard (S-100 표준 기반 공간 및 항행정보 융합 서비스 플랫폼 설계 및 구현)

  • Kim, Min Soo;Jang, In Sung;Lee, Chung Ho
    • Spatial Information Research
    • /
    • v.21 no.6
    • /
    • pp.23-32
    • /
    • 2013
  • Recently, there has been much interest in the converged platform that enables the harmonized collection, integration, exchange, presentation and analysis of various kinds of marine information by using the ICT means. Regarding such the converged platform, S-100 standards including the international hydrographic data model are being announced and various studies have been published based on the S-100 standards. However, the existing studies have presented simple solutions for only given problems on the converged service of the maritime information. They could not propose the design concept of the converged platform which makes it possible to provide the standardized and integrated services among the geospatial data, the real-time maritime data, and the next ENC. Therefore, we propose design and implementation details of the converged service platform for the geospatial and the maritime data based on the S-100, WMS, WMTS, WPS, SOS standards. The proposed platform has advantages of supporting both the S-57 and the S-101, supporting the converged services of heterogeneous geospatial data and ENC data, supporting the real-time services of sensor data such as weather, AIS, and CCTV, and supporting the development of various kinds of maritime systems such as ECDIS, ECS, VTS based on the WebApp service. Finally, we proved the effectiveness of our proposed platform through the actual implementation of the converged service of geospatial data, S-101 data, and KWeather data.

Automated Vehicle Research by Recognizing Maneuvering Modes using LSTM Model (LSTM 모델 기반 주행 모드 인식을 통한 자율 주행에 관한 연구)

  • Kim, Eunhui;Oh, Alice
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.16 no.4
    • /
    • pp.153-163
    • /
    • 2017
  • This research is based on the previous research that personally preferred safe distance, rotating angle and speed are differentiated. Thus, we use machine learning model for recognizing maneuvering modes trained per personal or per similar driving pattern groups, and we evaluate automatic driving according to maneuvering modes. By utilizing driving knowledge, we subdivided 8 kinds of longitudinal modes and 4 kinds of lateral modes, and by combining the longitudinal and lateral modes, we build 21 kinds of maneuvering modes. we train the labeled data set per time stamp through RNN, LSTM and Bi-LSTM models by the trips of drivers, which are supervised deep learning models, and evaluate the maneuvering modes of automatic driving for the test data set. The evaluation dataset is aggregated of living trips of 3,000 populations by VTTI in USA for 3 years and we use 1500 trips of 22 people and training, validation and test dataset ratio is 80%, 10% and 10%, respectively. For recognizing longitudinal 8 kinds of maneuvering modes, RNN achieves better accuracy compared to LSTM, Bi-LSTM. However, Bi-LSTM improves the accuracy in recognizing 21 kinds of longitudinal and lateral maneuvering modes in comparison with RNN and LSTM as 1.54% and 0.47%, respectively.

Analysis of Spatial Precipitation Field Using Downscaling on the Korean Peninsula (상세화 기법을 통한 한반도 공간 강우장 분석)

  • Cho, Herin;Hwang, Seokhwan;Cho, Yongsik;Choi, Minha
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.11
    • /
    • pp.1129-1140
    • /
    • 2013
  • Precipitation is one of the important factors in the hydrological cycle. It needs to understand accurate of spatial precipitation field because it has large spatio-temporal variability. Precipitation data obtained through the Tropical Rainfall Monitoring Mission (TRMM) 3B43 product is inaccurate because it has 25 km space scale. Downscaling of TRMM 3B43 product can increase the accuracy of spatial precipitation field from 25 km to 1 km scale. The relationship between precipitation and the normalized difference vegetation index(NDVI) (1 km space scale) which is obtained from the Moderate Resolution Imaging Spectroradiometers (MODIS) sensor loaded in Terra satellite is variable at different scales. Therefore regression equations were established and these equations apply to downscaling. Two renormalization strategies, Geographical Difference Analysis (GDA) and Geographical Ratio Analysis (GRA) are implemented for correcting the differences between remote sensing-derived and rain gauge data. As for considering the GDA method results, biases, the root mean-squared error (RMSE), MAE and Index of agreement (IOA) is equal to 4.26 mm, 172.16 mm, 141.95 mm, 0.64 in 2009 and 17.21 mm, 253.43 mm, 310.56 mm, 0.62 in 2011. In this study, we can see the 1km spatial precipitation field map over Korea. It will be possible to get more accurate spatial analysis of the precipitation field through using the additional rain gauges or radar data.

Fabrication and pH response characteristics of LAPS(Light addressable potentiometric sensor) with electrolyte/$Si_3N_4/SiO_2$/Si structure (Electrolyte/$Si_3N_4/SiO_2/Si$ 구조의 LAPS 제작 및 pH 응답특성)

  • Chang Su-Won;Koh Kwang-Nak;Kang Shin-Won
    • Journal of the Korean Electrochemical Society
    • /
    • v.1 no.1
    • /
    • pp.40-44
    • /
    • 1998
  • The LAPS device of fast response and high sensitivity, based on electrochemical potential difference, and its system were fabricated for the precise measurement of pH changes and its characteristic were investigated. The electrostatic variation characteristics of LAPS according to the pH changes and parameters in the device were verified through a simulation using LAPS equivalent circuit model. The LAPS device and its system were fabricated on the basis of the result of simulation. The fabricated LAPS system showed linear sensitivity (about 56 mV/pH within the range of pH 2 to pH 11. In order to overcome the defect of general urea sensor (especially slow response time), urease immobilized nitrocellulose membrane was attached on the LAPS and resulted in the very fast response time, 0.29 mV/sec, 0.86 mV/sec at urea concentration of $50{\mu}g/ml,\; 500{\mu}g/ml$, respectively. And also in order to measure the uranyl ion, the uranyl ion selective sensing membrane with calix[6]arene derivative was used and its sensitivity was 25mV/concentration decade in the wide uranyl ion concentration range of $10^{-11}M\;to\;10^{-4}M$.

Design of the Power Assist Controller for the In-Wheel Type Smart Wheelchair (인휠형 스마트 휠체어를 위한 힘 보조 제어기 설계)

  • Kong, Jung-Shik;Baek, Seung-Yub
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.1
    • /
    • pp.80-85
    • /
    • 2011
  • This paper presents the design of the power-assisted controller for the in-wheel type smart wheelchair by using torque estimation that is predicted by relationship between input voltage and output wheel angular velocity. Nowadays, interest of the moving assistant aids is increased according to the increase in population of the elderly and the handicapped person. However some of the moving assistant aids have problems. For example, manual wheelchair has difficulty moving at the slope, because users lack the muscular strength of their arm. In electric wheelchair case, users should be weak by being decreased muscles of upper body. To overcome these problems, power-assisted electric wheelchair are proposed. Most of the power-assisted electric wheelchair have the special rims that can measure the user's power. In here, the rims have to be designed to install the sensors to measure user's power. In this paper, we don't design the rim to measure the man power. To predict the man power, we propose a control algorithm of the in-wheeled electric wheelchair by using torque estimation from the wheel. First, we measure the wheel velocity and voltage at the in-wheel electric wheelchair. And then we extract driving will forces by using proposed mathematical model. Also they are applied at the controller as the control input, we verify to be able to control in-wheel type smart wheelchair by using simulation.

A Study of GPS Ship Navigation System Using Precise Coordinate Conversion Algorithms. (정밀 좌표변환 알고리즘을 이용한 인공위성 항로추적시스템에 관한 연구)

  • Chang, Yong-Ku;Mun, Du-Yeoul;Choi, Sung-Jae;Lee, Young-Hee
    • Journal of Navigation and Port Research
    • /
    • v.27 no.1
    • /
    • pp.41-48
    • /
    • 2003
  • The most great GPS is working on CNS(Car navigation System) and Personal terminal, but ocean has not been. First studied GPS is sailing to ship but We have been connivance that The ship is not need detail navigation. Lately, harbor facilities and transportation service in harbors are complication. We have need accurate ship navigation system. In this paper, author developed algorithms of ellipsoid conversion between WGS84 and BESSEL and develope algorithms of map projection between ellipsoid coordinate system, and plane cartesian system. Author used 3-parameter in covering ellipsoids and used TM and UTM projection in converting between ellipsoid and plane cartesian coordinate. And author analyzed errors through static surveying and dynamic surveying of GPS for proving accuracy of GPS sensor, Furthermore author analyzed deflection error of received position. Finally author developed real time ship navigation system using cheep GPS sensor.