• Title/Summary/Keyword: 센서 검증

Search Result 2,123, Processing Time 0.028 seconds

Smart Safety Helmet Using Arduino (아두이노를 이용한 스마트 안전모)

  • Lee, Dong-Gun;Kim, Won-Boem;Kim, Joong-Soo;Lim, Sang-Keun;Kong, Ki-Sok
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.1
    • /
    • pp.77-83
    • /
    • 2019
  • Major causes of industrial accidents include falls and gas leak. The existing safety helmet and smart device combination products are focused on convenience, so the functions to prevent such accidents are insufficient. We developed a smart helmet focusing on fall accident detection and gas leak detection. We also developed management system to manage workers efficiently. Its core function is to detect dangerous conditions of employees, to communicate with managers and to confirm the situations of workers. The effectiveness of the combustible gas measurement capability was verified through experiments. However, since a significant amount of power consumption is founded due to continuous operation of the board and the sensor, countermeasures such as replacing with a large capacity battery are required.

Big Data-based Sensor Data Processing and Analysis for IoT Environment (IoT 환경을 위한 빅데이터 기반 센서 데이터 처리 및 분석)

  • Shin, Dong-Jin;Park, Ji-Hun;Kim, Ju-Ho;Kwak, Kwang-Jin;Park, Jeong-Min;Kim, Jeong-Joon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.1
    • /
    • pp.117-126
    • /
    • 2019
  • The data generated in the IoT environment is very diverse. Especially, the development of the fourth industrial revolution has made it possible to increase the number of fixed and unstructured data generated in manufacturing facilities such as Smart Factory. With Big Data related solutions, it is possible to collect, store, process, analyze and visualize various large volumes of data quickly and accurately. Therefore, in this paper, we will directly generate data using Raspberry Pi used in IoT environment, and analyze using various Big Data solutions. Collected by using an Sqoop solution collected and stored in the database to the HDFS, and the process is to process the data by using the solutions available Hive parallel processing is associated with Hadoop. Finally, the analysis and visualization of the processed data via the R programming will be used universally to end verification.

Study on Underwater Black Box Data Recovery System using Optical Wireless Communication (수중 가시광 통신을 이용한 블랙박스 데이터 회수 시스템 연구)

  • Son, Hyeon-joong;Choi, Hyeung-sik;Kang, Jin-il;Sur, Joo-no;Jeong, Seong-hoon;Lee, Jaeheon;Kim, Seo-kang
    • Journal of Advanced Navigation Technology
    • /
    • v.23 no.1
    • /
    • pp.61-68
    • /
    • 2019
  • Underwater wireless light communication system is quite necessary to retrieve recorded data from underwater devices or the black box without taking back it body. In this paper, a research on the light sensor technology in underwater wireless light communication under turbid sea was studied. A noise source under turbid sea for light communication was analysed, and a sensor system for light sensing using the reference light signal to remove the noises and to improve the output swing power wasstudied. Also, an underwater communication system was manufactured to validate the good performance of the development system, and using the system, the good performance of the developed system was validated through the light communication test in the tank containing the turbid sea water was presented.

Indirect Verification of the Icing Test Condition Using Ice Thickness (얼음두께를 이용한 결빙시험조건의 간접 확인기법)

  • Kim, Yoo Kyung;Park, Nameun;Choi, Gio
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.11
    • /
    • pp.944-951
    • /
    • 2018
  • Artificial icing test and wind tunnel test can be performed to reduce the development period when a rotorcraft is required operation under icing situations. Artificial icing test of the KUH(Korean Utility Helicopter) was performed in advance to verify anti-icing and de-icing performance before natural icing test. Although high-precision sensor, the CCP(Cloud Combination Probe) is used to measure icing test condition parameters such as LWC(Liquid Water Content) and MVD(Median Volume Diameter), the measured values need to be verified in various methods due to the possibility of uncertainties which are the test atmosphere environment, sensor errors, and etc. The calculated LWC from the ice thickness cumulated on the fuselage of the KUH is compared to the measured value by CCP, and the results show the effective indirect method to check the test conditions.

Proposal of Safe PIN Input Method on VR (VR 상에서의 안전한 PIN 입력 방법 제안)

  • Kim, Hyun-jun;Kwon, Hyeok-dong;Kwon, Yong-bin;Seo, Hwa-jeong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.5
    • /
    • pp.622-629
    • /
    • 2019
  • VR(Virtual Reality), which provides realistic services in virtual reality, provides a similar experience using a Head Mounted Display(HMD) device. When the HMD device is worn, it can not recognize the surrounding environment and it is easy to analyze the input pattern of the user with the Shoulder Surfing Attack(SSA) when entering the Personal Identification Number(PIN). In this paper, we propose a method to safeguard the user's password even if the hacker analyzes the input pattern while maintaining the user's convenience. For the first time, we implemented a new type of virtual keypad that deviates from the existing rectangle shape according to the VR characteristics and implemented the lock object for intuitive interaction with the user. In addition, a smart glove using the same sensor as the existing input devices of the VR and a PIN input method suitable for the rotary type are implemented and the safety of the SSA is verified through experiments.

Detection and Identification of CMG Faults based on the Gyro Sensor Data (자이로 센서 정보 기반 CMG 고장 진단 및 식별)

  • Lee, Jung-Hyung;Lee, Hun-Jo;Lee, Jun-Yong;Oh, Hwa-Suk;Song, Tae-Seong;Kang, Jeong-min;Song, Deok-ki;Seo, Joong-bo
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.2
    • /
    • pp.26-33
    • /
    • 2019
  • Control moment gyro (CMG) employed as satellite actuators, generates a large torque through the steering of its gimbals. Although each gimbal holds a high-speed rotating wheel, the wheel imbalances induces disturbance and degrades the satellite control quality. Therefore, the disturbances ought to be detected and identified as a precaution against actuator faults. Among the method used in detecting disturbances is the state observers. In this paper, we apply a continuous second order sliding mode observer to detect single disturbances/faults in CMGs. Verification of the algorithm is also done on the hardware satellite simulator where four CMGs are installed.

A collaborative Serious Game for fire disaster evacuation drill in Metaverse (재난 탈출 협동 훈련 기능성 게임의 메타버스 플랫폼 구현)

  • Lee, Sangho;Ha, Gyutae;Kim, Hongseok;Kim, Shiho
    • Journal of Platform Technology
    • /
    • v.9 no.3
    • /
    • pp.70-77
    • /
    • 2021
  • The purpose of Serious games in immersive Metaverse platform to provide users both fun and intriguing learning experiences. We proposes a serious game for self-trainable fire evacuation drill with collaboration among avatars synchronized with multiple trainees and optionally with real-time supervising placed at different remote physical locations. The proposed system architecture is composed of wearable motion sensors and a Head Mounted Display to synchronize each user's intended motions to her/his avatar activities in a cyberspace in Metaverse environment. The proposed system provides immersive as well as inexpensive environments for easy-to-use user interface for cyber experience-based fire evacuation training system. The proposed configuration of the user-avatar interface, the collaborative learning environment, and the evaluation system on the VR serious game are expected to be applied to other serious games. The game was implemented only for the predefined fire scenario for buildings, but the platform can extend its configuration for various disaster situations that may happen to the public.

A Flexible Approach for Efficient Elliptic Curve Multi-Scalar Multiplication on Resource-constrained Devices (자원이 제약된 장치에서 효율적인 타원곡선 다중 상수배의 구현을 위한 유연한 접근)

  • Seo, Seog-Chung;Kim, Hyung-Chan;Ramakrishna, R.S.
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.16 no.6
    • /
    • pp.95-109
    • /
    • 2006
  • Elliptic Curve Cryptosystem (ECC) is suitable for resource-constrained devices such as smartcards, and sensor motes because of its short key size. This paper presents an efficient multi-scalar multiplication algorithm which is the main component of the verification procedure in Elliptic Curve Digital Signature Algorithm (ECDSA). The proposed algorithm can make use of a precomputed table of variable size and provides an optimal efficiency for that precomputed table. Furthermore, the given scalar is receded on-the-fly so that it can be merged with the main multiplication procedure. This can achieve more savings on memory than other receding algorithms. Through experiments, we have found that the optimal sizes of precomputed tables are 7 and 15 when uP+vQ is computed for u, v of 163 bits and 233 bits integers. This is shown by comparing the computation time taken by the proposed algorithm and other existing algorithms.

CNN-LSTM Combination Method for Improving Particular Matter Contamination (PM2.5) Prediction Accuracy (미세먼지 예측 성능 개선을 위한 CNN-LSTM 결합 방법)

  • Hwang, Chul-Hyun;Shin, Kwang-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.1
    • /
    • pp.57-64
    • /
    • 2020
  • Recently, due to the proliferation of IoT sensors, the development of big data and artificial intelligence, time series prediction research on fine dust pollution is actively conducted. However, because the data representing fine dust contamination changes rapidly, traditional time series prediction methods do not provide a level of accuracy that can be used in the field. In this paper, we propose a method that reflects the classification results of environmental conditions through CNN when predicting micro dust contamination using LSTM. Although LSTM and CNN are independent, they are integrated into one network through the interface, so this method is easier to understand than the application LSTM. In the verification experiments of the proposed method using Beijing PM2.5 data, the prediction accuracy and predictive power for the timing of change were consistently improved in various experimental cases.

Design of FPGA-based Signal Processing of EWRG for Localized Heavy Rainfall Observation (국지성 호우 관측을 위한 FPGA 기반의 전파강수계 신호처리 설계)

  • Choi, Jeong-Ho;Lee, Bae-Kyu;Park, Hyeong-Sam;Park, Jeong-Min;Lim, Sang-Hun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.9
    • /
    • pp.1215-1223
    • /
    • 2020
  • Recently, the number of natural disasters caused by inclement weather conditions such as localized heavy rainfall, Typhoon, etc. is increasing in Korea, which requires relevant prevention and water management measures. Rain gauges installed on the ground have strengths in continuously·directly measures ground precipitation but cannot provide accurate information on spatial precipitation distribution in the areas without the rain gauges. The present research has designed and developed an electromagnetic-based multi-purpose precipitation gauge(EWRG, Electromagnetic Wave Rain Gauge) that can measure rainfall at the real time, by overcoming spatial representativeness. In this paper, we propose an FPGA-based signal processing design method for EWRG. The signal processing of the EWRG was largely designed by calculating the ADC and DDC of the LFM waveform, pulse compression, correlation coefficient and estimating the precipitation parameter. In this study, the LFM waveform and pulse compressed signal were theoretically analyzed.