• Title/Summary/Keyword: 세포내 칼슘

Search Result 152, Processing Time 0.031 seconds

Regulatory Action of Protein Tyrosine Kinase in Intracellular Calcium Mobilization in C5a-stimulated Neutrophils (C5a에 의해 자극된 호중구에서 세포내 칼슘동원에 대한 Protein Tyrosine Kinase의 조절작용)

  • Choi, Won-Tae;Han, Eun-Sook;Lee, Chung-Soo
    • The Korean Journal of Pharmacology
    • /
    • v.32 no.3
    • /
    • pp.417-424
    • /
    • 1996
  • The present study was done to examine the involvement of protein kinase C and protein tyrosine kinase in intracellular $Ca^{2+}$ mobilization in C5a-stimulated neutrophils. Although protein kinase C inhibitors, staurosporine and H-7 inhibited intracellular $Ca^{2+}$ release in C5a-stimulated neutrophils, they did not affect $Ca^{2+}$ influx across the plasma membrane and elevation of $[Ca^{2+}]_i$ C5a-induced intracellular $Ca^{2+}$ release and $Ca^{2+}$ influx were inhibited by protein tyrosine kinase inhibitors, genistein and methyl-2,5-dihydroxycinnamate. ADP-evoked elevation of $[Ca^{2+}]_i$ was inhibited by genistein and methyl-2,5-dihydroxycinnamate but was not affectd by staurosporine and H-7. Genistein and methyl-2,5-dihydroxycinnamate reduced the store-regulated $Ca^{2+}$ influx in thapsigargin-treated neutrophils, while the effect of staurosporine and H-7 was not detected. When neutrophils were preincubated wih phorbol 12-myristate 13-acetate, the stimulatory effect of C5a on the elevation of $[Ca^{2+}]_i$ was reduced. These results suggest that protein tyrosine kinase may be involved in control of intracellular $Ca^{2+}$ release and $Ca^{2+}$ influx across the plasma membrane in C5a-activated neutrophils.

  • PDF

Effects of Potassium Ion and Caffeine on Contraction and Cytosolic Free $Ca^{2+}$ Levels in Vascular Smooth Muscle (혈관평할근 세포에서의 칼륨이온과 카페인의 영향: 수축과 세포내 칼슘이온 농도에 대하여)

  • Ahn, H.Y.;Karaki, H.
    • The Korean Journal of Pharmacology
    • /
    • v.24 no.2
    • /
    • pp.197-201
    • /
    • 1988
  • Effects of high concentration of KC1 and caffeine on cytosolic $Ca^{2+}$ level $([Ca^{2+}]_{cyt})$, measured simultaneously with muscle tension using a fluorescent intracellular $Ca^{2+}$ indicator fura 2, were examined in isolated smooth muscle of rat aorta. High $K^+$ (72.7 mM) solution induced sustained increase in both $([Ca^{2+}]_{cyt})$ and tension. In contrast to this, caffeine (20 mM) induced a rapid increase in $([Ca^{2+}]_{cyt})$ followed by a decrease to a level which was higher than the resting level. However, muscle tension showed only a transient increase followed by a decrease below the resting level. In a $Ca^{2+}-free$ solution, high $K^+-induced$ neither $([Ca^{2+}]_{cyt})$ nor tension, whereas caffeine induced a transient increase in both $([Ca^{2+}]_{cyt})$ and muscle tension. These results suggest that high $K^+-induced$ contraction in vascular smooth muscle of rat aorta is due to $Ca^{2+}$ influx whereas caffeine-induced contraction is due to $Ca^{2+}$ release from cellular store. Further, caffeine seems to have an additional effect to decrease the sensitivity of the contractile elements to $Ca^{2+}$.

  • PDF

Effect of Ruthenium Red and Ryanodine on Calcium Ion Metabolism in Oocyte and Early Embryo of Mouse (생쥐의 난자와 초기배아의 칼슘이온 대사에 미치는 Ruthenium Red와 Ryanodine의 영향)

  • Lee Joon Yeong;Hong Soon Cap;Kim Tae Sik;Min Byeong Yeol;Kim Haekwon;Yoon Yong-Dal
    • Development and Reproduction
    • /
    • v.7 no.2
    • /
    • pp.95-103
    • /
    • 2003
  • Intracellular calcium is an important physiological factor in most cells, and ruthenium red and ryanodine play an important role as calcium modulators. Ruthenium red inhibits calcium-induced calcium release(CICR) from the intracellular calcium store. Ryanodine activates calcium release through ryanodine channel. The present experiment was performed to investigate the effects of two modulators on calcium ion metabolism and to determine their dose-dependency in oocyte and early embryo of mouse. Intracellular calcium ion concentration was measured in realtime by using confocal laser scanning microscope(CLSM) after loading of Fluo-3/AM in mouse oocytes and early embryos. Ruthenium red decreased intracellular calcium ion concentration in oocytes and early embryos at its high concentration(30, 300 $\mu$M). Ryanodine increased intracellular calcium ion concentration in oocytes and early embryos in low concentration(0.01 $\mu$M) but decreased that at higher concentrations(1, 10 $\mu$M). These results indicate that two modulators affected calcium ion metabolism in oocyte and early embryo of mouse, and their dose-dependency was different from somatic cell including myocytes.

  • PDF

The Change of Cytosolic Free Calcium Concentration Following Herpes Simplex Virus Type-1 (HSV-1) Infection (Herpes Simplex Virus Type-1 (HSV-1) 감염에 따른 세포내 유리 $Ca^{2+}$농도의 변화)

  • 남윤정;이규철;이찬희
    • Korean Journal of Microbiology
    • /
    • v.36 no.4
    • /
    • pp.306-311
    • /
    • 2000
  • Infection of Vero cells with herpes simplex virus type-1 (HSV-1) resulted in a series of changes in intra-cellular free calcium concentration $([Ca^{2+}]_i)$. A significant and maximal decrease $[Ca^{2+}]_i$ was observed at 4 hours postinfection (hr p.i.) in HSV-1-infected in Vero cells. Inactivation of HSV-1 with UV irradiation and heat treatment abolished HSV-1-induced decrease in $[Ca^{2+}]_i$ at 4 hr p.i. in Vero cells. And the degree of the decrease in $[Ca^{2+}]_i$ was dependent on the amount of input virus. Taxol, which stabilizes the polymerization of microtubule blocked HSV-1-induced decrease in $[Ca^{2+}]_i$ at 4 hr p.i., suggesting that microtubule may mediate the transport of HSV-1 nucleocapsid to the nucleus of infected cell. Treatment of HSV-1-infected Vero cells with metabolic inhibitors such as cycloheximide, cordycepin, or acyclovir partially reversed the decrease in $[Ca^{2+}]_i$ at 4 hr p.i.. Thus, it is suggested that HSV-1 induced decrease in $[Ca^{2+}]_i$ at 4 hr p.i. in Vero cells may play an important role in the multiplication of HSV-1.

  • PDF

Alteration of the Activated Responses in Platelet-Activating Factor-Stimulated Neutrophils by Protein Kinase Inhibitors (Protein Kinase 억제제 첨가 후 Platelet-Activating Factor에 의하여 자극된 호중구반응의 변경)

  • Lee, Kang-Kun;Ko, Ji-Young;Ham, Dong-Suk;Shin, Yong-Kyoo;Lee, Chung-Soo
    • The Korean Journal of Pharmacology
    • /
    • v.32 no.1
    • /
    • pp.103-112
    • /
    • 1996
  • Roles of protein kinase C and protein tyrosine kinase in the activation of neutrophil respiratory burst, degranulation and elevation of cytosolic $Ca^{2+}$ in platelet-activating factor (PAF)-stimulated neutrophils were investigated. Superoxide and $H_2O_2$ production and myeloperoxidase and acid phosphatase release in PAF-stimulated neutrophils were inhibited by protein kinase C inhibitors, staurosporine and H-7 and protein tyrosine kinase inhibitors, genistein and tyrphostin. The PAF-induced elevation of $[Ca^{2+}]_i$ in neutrophils was inhibited by staurosporine, genistein and methyl-2,5-dihydroxycinnamate. Staurosporine inhibited both intracellular $Ca^{2+}$ release and $Mn^{2+}$ influx in PAF-stimulated neutrophils. Genistein and methyl-2,5-dihydroxycinnamate inhibited $Mn^{2+}$ influx induced by PAF, whereas their effects on intracellular $Ca^{2+}$ release were not detected. In neutrophils preactivated by PMA, the stimulatory effect of PAF on the elevation of $[Ca^{2+}]_i$ was reduced. Protein kinase C and protein tyrosine kinase may be involved in respiratory burst, lysosomal enzyme release and $Ca^{2+}$ mobilization in PAF-stimulated neutrophils. The elevation of $[Ca^{2+}]_i$ appears to be accomplished by intracullular $Ca^{2+}$ release and $Ca^{2+}$ influx which are differently regulated by protein kinases. Preactivation of protein kinase C appears to attenuate the stimulatory action of PAF on intracellular $Ca^{2+}$ mobilization.

  • PDF

Tamoxifen Induces Mitochondrial-dependent Apoptosis via Intracellular Ca2+ Modulation (탐옥시펜에 의해 유도된 세포 내 칼슘농도 변화와 미토콘드리아 의존적 세포사멸)

  • Jang, Eun-Seong;Kim, Ji-Young;Kim, Byeong-Gee
    • Journal of Life Science
    • /
    • v.17 no.8 s.88
    • /
    • pp.1053-1062
    • /
    • 2007
  • In the present work, we show that tamoxifen(Tam)-induced cytotoxicity is due to the mitochondrial-dependent pathway triggered by the intracellular $Ca^{2+}$ increase in MCF-7 human breast cancer cells. Tam induced the intracellular $Ca^{2+}$ increase. According to the experimental results with $Ca^{2+}$ channel blockers, Tam-induced $Ca^{2+}$ uptake seemed to depend on the voltage-sensitive $Ca^{2+}$ channel at the early stage, but at later stages the intracellular $Ca^{2+}$ increases are more likely due partly to the release of stored $Ca^{2+}$ and partly to the capacitative $Ca^{2+}$ or other entry pathways. Tam-induced $Ca^{2+}$ increase led to the release of cytochrome c from mitochondria into the cytosol and the change of mitochondrial membrane potential. In MCF-7 cells, caspase-7 plays a key role in the downstream of apoptosis because caspase-3 is absent. In the cells treated with Tam, caspase-7 cleavage was increased almost two-fold. There was no marked alteration in the level of anti-apoptotic Bcl-2 protein; however, the cells showed increased expression of pro-apoptotic Bax protein more than two-fold in response to Tam. These results imply that the apoptotic signaling pathway activated by Tam is likely to be mediated via the mitochondrial-dependent pathway.

Cellular Mechanism of Nicotine-mediated Intracellular Calcium Homeostasis in Primary Culture of Mouse Cerebellar Granule Cells (니코틴의 마우스 소뇌과립세포내 칼슘의 항상성 조절기전)

  • Kim, Won-Ki;Pae, Young-Sook
    • The Korean Journal of Pharmacology
    • /
    • v.32 no.1
    • /
    • pp.13-21
    • /
    • 1996
  • Intracellular calcium concentration ($[Ca^{2+}]_i$) may play a crucial role in a variety of neuronal functions. Here we report that in primary culture of mouse cerebellar granule cells nicotinic acetylcholine receptors (nAChRs) are expressed in a specific developmental stage and involved in the regulation of intracellular calcium homeostasis. Nicotine-mediated calcium responses were measured using $^{45}Ca^{2+}$ or fluorometrically using the calcium-sensitive fluorescent dye fura-2. Maximal uptake of $^{45}Ca^{2+}$ evoked by nicotine in mouse cerebellar granule cells were revealed $8{\sim}12$ days in culture. In contrast, nicotine did not alter the basal $^{45}Ca^{2+}$ uptake in cultured glial cells. In cerebellar granule cells nicotine-evoked $^{45}Ca^{2+}$ uptake was largely blocked by the NMDA receptor antagonists. Glutamate pyruvate transaminase (GPT). which removes endogenous glutamate, also prevented nicotine effects, implying the indirect involvement of glutamate in nicotine-mediated calcium responses. Fluorometric studies using fura-2 showed two phases of nicotine-evoked $[Ca^{2+}]_i$ rises: the initial rising phase and the later plateau phase. Interestingly, the NMDA receptor antagonists and GPT appeared to inhibit only the later plateau phase of nicotine-evoked $[Ca^{2+}]_i$ rises. The present results imply that nicotine mediated $^{45}Ca^{2+}$ uptake and $[Ca^{2+}]_i$ rises are attributed to the calcium fluxes through both nAchRs and NMDA receptors in a time-dependent manner. Consequently, nAChRs may play an important role in neuronal development by being expressed in a specific developmental stage and regulating the intracellular calcium homeostasis.

  • PDF

Role of Calcium and Protein Kinase C in Platelet Activating Factor-induced Activation of Peritoneal Macrophages (Platelet Activating Factor에 의한 대식세포의 활성화에 있어서 칼슘과 Protein Kinase C의 역할)

  • Lee, Chung-Soo;Kim, Young-Jun;Shin, Yong-Kyoo;Lee, Kwang-Soo
    • The Korean Journal of Pharmacology
    • /
    • v.29 no.1
    • /
    • pp.107-120
    • /
    • 1993
  • Particulate or soluble stimuli appear to stimulate phagocytic cell's response by the change of $Ca^{2+}$ mobilization and by the activation of protein kinase C. In contrast, it is reported that activation of protein kinase C could attenuate agonist-stimulated elevation of $Ca^{2+}i$ in neutrophils. PAF elicited an increase of $Ca^{2+}i$ in peritoneal macrophages in a dose dependent fashion and $Ca^{2+}$ extrusion was accompanied. PAF-induced elevation of $Ca^{2+}i$ was not affected by TMB-8, verapamil and TTX. TEA stimulated PAF-induced mobilization of $Ca^{2+}i$ and delayed lowering of $Ca^{2+}i$. Five mM EGTA almost completely inhibited PAF-induced mobilization of $Ca^{2+}i$. After the addition of PAF, membrane permeability was markedly increased up to 5 min and then slowly increased. PAF-induced LDH release was slightly decreased by EGTA plus TMB-8. PAF-stimulated superoxide generation was inhibited by EGTA, TMB-8 and verapamil but not affected by TTX and TEA. PAF-induced elevation of $Ca^{2+}i$, increased membrane permeability and superoxide generation were inhibited by IQSP, chlorpromazine and propranolol. PAF-induced LDH release was significantly inhibited by chlorpromazine and minimally decreased by propranolol. After the pretreatment with PMA, the stimulatory effect of PAF on the elevation of $Ca^{2+}i$ and LDH release in macrophages was significantly decreased. These results suggest that PAF may exert the stimulatory action on peritoneal macrophages of mouse by the elevation of $Ca^{2+}i$ and by the activation of protein kinase C. Preactivation of protein kinase C appears to attenuate the stimulatory action of PAF on macrophage response.

  • PDF

Potential Effects of Ginseng Saponin Fractions on Macrophage Chemotaxis and Intracellular Calcium and Actin Mobilization (대식세포의 화학주성과 세포내 칼슘과 Actin의 증가에 미치는 인삼사포닌 성분의 영향)

  • Shin, Eun-Kyoung;Kim, Sei-Chang
    • The Journal of Natural Sciences
    • /
    • v.10 no.1
    • /
    • pp.39-47
    • /
    • 1998
  • In the present study, We have tested the potential effects of ginseng saponin fractions on macrophage chemotaxis and intracellular calcium and F-actin mobilization. Peritoneal macrophages treated with various ginseng saponin fractions showed 28.4% to 71% of increasement of chemotaxis as compared with untreated cells. The activity of intracelluar calcium mobilization was increased up to 65% by treatment with saponins, and F-actin content also increased 10% in the cells loaded with NBD-phallacidin. When the cells were activated with calcium of PMA and treated with saponin fractions, the intracelluar F-actin content increased significantly and prolonged for 2 minutes. These results suggest that ginseng saponin fractions might be a chemoattractants.

  • PDF

THE EFFECT OF RISPERIDONE ON SALIVARY GLAND CELLS (리스페리돈이 타액선 세포에 미치는 영향)

  • Lee, Yeon-Joo;Kim, Yeong-Jae;Kim, Jung-Wook;Jang, Ki-Taek;Kim, Chong-Chul;Hahn, Se-Hyun;Lee, Sang-Hoon
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.35 no.1
    • /
    • pp.47-56
    • /
    • 2008
  • Risperidone is a widely prescribed atypical antipsychotic agent. Approved by the FDA as the first drug to treat irritability associated with autism in children, it is also used to treat tic disorder and Tourette's syndrome. Its adverse reactions related to dentistry include dry mouth, the mechanism of which is yet to be identified. The aim of this study is to identify, at the cellular level, how and to what extent risperidone affects intracellular free calcium concentration ($[Ca^{2+}]_i$), an primary intracellular factor in the regulation of fluid secretion in salivary gland cells. The human salivary gland cell line (HSG) was grown in MEM supplemented with 10% BCS. In order to measure $[Ca^{2+}]_i$, Fura-2/AM was loaded in the HSG, and fluorescence at 340 nm/380 nm excitation was measured in the 500 nm emission ratio. After every experiment, a calibration experiment was conducted in order to readjust the ratio to the actual $[Ca^{2+}]_i$. Changes in $[Ca^{2+}]_i$ were measured in the presence of carbachol, ATP and histamine. The researcher then explored how the pretreatment of risperidone affected such changes. Findings of this study include: 1. In HSG, $[Ca^{2+}]_i$ increased due to the addition of carbachol, ATP and histamine. The presence of risperidone inhibited the action of histamine on this process, while making little effect on that of carbachol and ATP. 2. A quantification of $[Ca^{2+}]_i$ in relation to histamine of different concentrations indicates that the effect of histamine was concentration dependent with an $EC_{50}$ of $3.3{\pm}0.5\;{\mu}M$. 3. The inhibitory effect of risperidone on histamine-induced $[Ca^{2+}]_i$ was concentration-dependent with an $IC_{50}$ of $104.4{\pm}14\;nM$. 4. Risperidone inhibits histamine-induced Ca2+ release from endoplasmic reticulum and influx of extracellular $Ca^{2+}$ in HSG cells(p<0.05).

  • PDF