• Title/Summary/Keyword: 세포내 공생

Search Result 17, Processing Time 0.023 seconds

Insect Resistance of Tobacco Plant Expressing CpBV-ELP1 Derived from a Polydnavirus (폴리드나바이러스 유래 CpBV-ELP1 발현 담배의 내충성)

  • Kim, Eunseong;Kim, Yonggyun
    • Korean journal of applied entomology
    • /
    • v.56 no.1
    • /
    • pp.19-28
    • /
    • 2017
  • Polydnaviruses (PDVs) are a group of double-stranded DNA viruses symbiotic to some endoparasitoid wasps. Cotesia plutellae bracovirus (CpBV) is a PDV symbiotic to an endoparasitoid wasp, C. plutellae, parasitizing young larvae of Plutella xylostella. An early expressed gene, CpBV-ELP1, plays an important role in the parasitism by suppressing host cellular immunity by its cytotoxic activity against hemocytes. This study aimed to test its oral toxicity against insect pest by expressing it in a recombinant tobacco plant. A recombinant CpBV-ELP1 protein was produced using a baculovirus expression system and secreted to cell culture medium. The cell cultured media were used to purify CpBV-ELP1 by a sequential array of purification steps: ammonium sulfate fractionation, size exclusion chromatography, and ion exchange chromatography. Purified rCpBV-ELP1 exhibited a significant cytotoxicity against Spodoptera exigua hemocytes. CpBV-ELP1 was highly toxic to the fifth instar larvae of S. exigua by injection to hemocoel. It also showed a significant oral toxicity to fifth instar larvae of S. exigua by a leaf-dipping assay. CpBV-ELP1 was cloned into pBI121 vector under CaMV 35S promoter with opaline synthase terminator. Resulting recombinant vector (pBI121-ELP1) was used to transform Agrobacterium tumefaciens LBA4404. The recombinant bacteria were then used to induce callus of a tobacco (Nicotiana tabacum Xanthi) leaves and subsequent generation (T1) plants were selected. T1 generation tobacco plants expressing CpBV-ELP1 gave significant insecticidal activities against S. exigua larvae. These results suggest that CpBV-ELP1 gene can be used to control insect pests by constructing transgenic crops.

Microbial Colonization of the Aquatic Duckweed, Spirodela polyrhiza, during Development (수생식물 개구리밥 (Spirodela polyrhiza)과 미생물)

  • Kim, In-Sun
    • Applied Microscopy
    • /
    • v.34 no.2
    • /
    • pp.103-111
    • /
    • 2004
  • Fresh specimens of the aquatic macrophyte, Spirodela polyrhiza, have been examined employing scanning and transmission electron microscopy. Observations revealed the occurrence of microbial colonization during development. Submerged parts of the small, free-floating S. polyrhiza body exhibited a variety of microorganisms such as bacteria, cyanobacteria, and diatoms throughout their development. However, immature and/or young plants normally demonstrated much less microbial colonization compared to mature plants. During the study, heavy colonization by the microorganisms was routinely encountered at maturity, especially in the fully developed abaxial fronds and root caps. The mucilaginous layer was shown along the root caps, and the microorganisms appeared to be either clustered or attached to this layer. In contrast, only moderate degrees of colonization were observed in the root, and little to no colonization was observable in the adaxial frond surface. Transmission electron microscopy clearly demonstrated the microbial colonization to be external in the S. polyrhiza specimen examined in the current study. The association between the microorganisms and S. polyrhiza has been considered non-harmful, as no frond senescence and almost no mechanical penetration of the plant by the microorganisms were noticed during the study.

Characterization of Weizmannia ginsengihumi LGHNH from Wild-Ginseng and Anti-Aging Effects of Its Cultured Product (산삼 공생 미생물 Weizmannia ginsengihumi LGHNH의 특징 및 배양물의 항노화 효능)

  • Minjung Kwon;Hyejin Lee;So Young Lee;Mu Hyun Jin
    • Microbiology and Biotechnology Letters
    • /
    • v.50 no.3
    • /
    • pp.414-421
    • /
    • 2022
  • In this study, we isolated Weizmannia ginsengihumi LGHNH (KCTC 14462BP) from 30-year-old wild Panax ginseng C.A. Meyer and elucidated the characteristics of the isolated bacterium and its industrial potential as an anti-aging material. W. ginsengihumi LGHNH was investigated to produce indole-3-acetic acid (IAA), a plant growth-promoting hormone (1.38 ㎍/ml to 2.22 ㎍/ml). We also confirmed the existence of bioconversion activity via the comparison of the ginsenoside content before and after fermentation. As for the converted minor ginsenoside, Rg2(R), Rg4, Rg6, Rg3(S), Rg3(R), Rk1, Rg5, Rh1(R), Rk3 and Rh4 are known to have high bioavailability and various skin effects. We measured mitochondrial membrane potential and ATP biosynthesis to elucidate W. ginsengihumi LGHNH cultured product (WCP) as an anti-aging material. As a result, the mitochondrial membrane potential in HaCaT cells with UVB decreased to 39.3% compared to the unirradiated group, but was recovered to 57.3% and 58.1% by 0.001% (v/v) and 0.01% (v/v) WCP, respectively. In addition, we measured mitochondrial ATP biosynthesis. It decreased to 94.3% compared to the unirradiated group with UVB, but was recovered to 105.3% and 105.7% by 0.001% (v/v) and 0.01% (v/v) WCP.

Bacterial endosymbiosis within the cytoplasm of Acanthamoeba Lwnunensis isolated from a contact lens storage case (콘택트렌즈 보존 용기 유래 Acnnthamoebc lugdunensis을 KA/LS주의 내공생세균)

  • 정동일;공현희
    • Parasites, Hosts and Diseases
    • /
    • v.35 no.2
    • /
    • pp.127-134
    • /
    • 1997
  • Transmission electron microscopy of an ArGnthnmoebo isolate (KA/LS) from a contact lens case revealed bacterial endosymbionts within cytoplasm of the amoebae. The Acnnthamoebn isolate belonged to the morphological group ll. Based on the polymerase chain reaction (PCR) - restriction fragment leilgth polymorphism (RFLP) of 185 ribosomal RNA coding DNA (rDNA) , the isolate was identified as A. Iwnunensis. Strain typing by isoenzyme analysis using isorlectric focusing (IEF) and mitochondrial (Ent) DNA RFLP revealed that the isolate was closely related with KA/Ll , the most predominant type of isolates from contact lens storage casas, KA/E2, a clinical isolate, KA/W4, previou:fly reported to host endosymbionts. and L3a strains of A. Iwnunensis. The endosymbionts were similar to those of KA/W4 in a.jpects that they were randomly distributed in both trophozoites and cysts, and were rod-shaped bacteri3 measuring approximately 1.38 x 0.50 ㎛. But the number of endosymbionts per amoeba was significantly lower than that of KA/W4. They were neither limited by phagosomal membranes nor included in lacunae- like stnlcture.

  • PDF

Comparison between Single and Co-culture of Adipocyte and Muscle Cell Lines in Cell Morphology and Cytosolic Substances (지방과 근육 세포주의 단독 및 공동배양을 통한 세포형태학 및 세포물질 비교 연구)

  • Choi, Chang-Weon;Cho, Won-Mo;Yeon, Seong-Heum;HwangBo, Soon;Song, Man-Kang;Park, Sung-Kwon;Baek, Kyung-Hoon
    • Journal of Animal Science and Technology
    • /
    • v.54 no.2
    • /
    • pp.103-109
    • /
    • 2012
  • Present study was performed to investigate the effect of single and co-culture of adipocyte and muscle cell lines on cell differentiation. 3T3-L1 (adipocyte) and L6 (muscle) cell lines were single-cultured on the condition of 10% fetal bovine serum (FBS)/Dulbeco's modified eagle's medium (DMEM) for 48 h followed by culture within 5% FBS/DMEM as a growth media. Then, the growth media was replaced by differentiation media composed of 2% FBS/DMEM without additives in single- or co-culture of the 3T3-L1 and the L6 cells to induce differentiation of both cell types. In co-culture system, the 3T3-L1 and the L6 cells were grown in separated places by being seeded on a $0.4{\mu}m$ insert membrane and on the bottom of 6 well plate, respectively. Cell differentiation was measured using morphological investigation and cytosolic analysis of glycerol-3-phosphate dehydrogenase (GPDH; for 3T3-L1) and creatine kinase (CK; for L6). Based on the GPDH results, the presence of L6 cells did not stimulate 3T3-L1 differentiation showing more differentiation of 3T3-L1 cells in the single-culture compared to the co-culture condition. In contrast, 3T3-L1 cells in the co-culture promoted differentiation of L6 cells. Enzymatic analysis supported this result showing that 3T3-L1 cells showed statistically (P<0.05) higher GPDH activity in the single-culture than the co-culture, whereas CK results of L6 cells were vice versa (P<0.05). Overall, present results may indicate that co-culture system is more reliable and precise technique compared to single-culture. Further studies on several co-culture trials including different media conditions, supplementation of differentiating substances, molecular biological analysis, etc. should be required to obtain practical and fundamental mass data.

Effect of Microbial Additives on Metabolic Characteristics in Sheep and Milking Performance of Lactating Dairy Cows (미생물제제의 첨가가 면양의 반추대사 및 젖소의 유생산성에 미치는 영향)

  • Kim, G.L.;Choi, S.K.;Choi, S.H.;Song, M.K.
    • Journal of Animal Science and Technology
    • /
    • v.49 no.6
    • /
    • pp.819-828
    • /
    • 2007
  • Two experiments were conducted to observe the effects of direct fed microbials on metabolic characteristics in sheep and milking performance in dairy cows. A metabolic trial with four ruminally cannulated sheep(60±6kg) was conducted in a 4×4 Latin square design to investigate the supplementation effects of Saccharomyces cerevisiae, Clostridium butyricum or mixed microbes of S. cerevisiae and C. butyricum on ruminal fermentation characteristics and whole tract digestibility. Sheep were fed 1.25 kg of total mixed ration(TMR, DM basis) supplemented with S. cerevisiae (2.5g/day), C. butyricum (1.0g/day) or its mixture(S. cerevisiae 1.25g/day+C. butyricum 1g/day), twice daily in an equal volume. But control sheep were fed only TMR. A feeding trial with 28 lactating Holstein cattle was also conducted for 12 weeks to investigate the effects of the same microbial supplements as for the metabolic trial on milking performance. The cows were fed the TMR(control), and fed S. cerevisiae(50g/day), C. butyricum(15g/day) or its mixture (S. cerevisiae 25g/day + C. butyricum 7.5g/day) with upper layer dressing method. Total VFA concentration and the digestibility of whole digestive tract in the sheep increased by supplementation of S. cerevisiae, C. butyricum or their combined microbials compare to control group. The proportion of propionic acid at 1h(P<0.039) and 3h(P<0.022) decreased by supplementation of S. cerevisiae while tended to increase acetic acid proportion at the same times. Daily dry matter intake(DMI) was not influenced by the microbial treatments, but milk yield(P<0.031) and feed efficiency(milk yield/DMI, P<0.043) were higher for the cow received C. butyricum than those for other treatments. The milk fat content was higher (P<0.085) when cows fed S. cerevisiae(4.11%) than that fed the control (4.08%), the diets with C. butyricum (3.85%) and the microbial mixture. Based on the results obtained from the current experiments, supplementation of C. butyricum or mixture with S. cerevisiae might be increased milk fat content and milk productivity of lactating daily cows. (Key words:Saccharomyces cerevisiae, Clostridium butyricum, Fermentation characteristics,

Physiological Ecology of parasitic Dinoflagellate Amoebophrya and Harmful Algal Blooms (기생성 와편모류 Amoebophrya의 생리 생태적 특성과 적조)

  • 박명길
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.7 no.3
    • /
    • pp.181-194
    • /
    • 2002
  • Parasitism is a one-sided relationship between two organisms in which one benefits at the expense of the other. Parasitic dinoflagellates, particularly species of Amoebophrya, have long been thought to be a potential biological agent for controlling harmful algal bloom(HAB). Amoebophrya infections have been reported for over 40 species representing more than 24 dinoflagellate genera including a few toxic species. Parasitic dinoflagellates Amoebophrya spp. have a relatively simple life cycle consisting of an infective dispersal stage (dinospore), an intracellular growth stage(trophont), and an extracellular reproductive stage(vermiform). Biology of dinospores such as infectivity, survival, and ability to successfully infect host cells differs among dinoflagellate host-parasite systems. There are growing reports that Amoebophrya spp.(previously, collectively known as Amoebophrya ceratii) exhibit the strong host specificity and would be a species complex composed of several host-specific taxa, based on the marked differences in host-parasite biology, cross infection, and molecular genetic data. Dinoflagellates become reproductively incompetent and are eventually killed by the parasite once infected. During the infection cycle of the parasite, the infected host exhibits ecophysiologically different patterns from those of uninfected host in various ways. Photosynthetic performance in autotrophic dinoflagellates can be significantly altered following infection by parasitic dinoflagellate Amoebophrya, with the magnitude of the effects over the infection cycle of the parasite depending on the site of infection. Parasitism by the parasitic dinoflagellate Amoebophrya could have significant impacts on host behavior such as diel vertical migration. Parasitic dinoflagellates may not only stimulate rapid cycling of dissolved organic materials and/or trace metals but also would repackage the relatively large sized host biomass into a number of smaller dinospores, thereby leading to better retention of host's material and energy within the microbial loop. To better understand the roles of parasites in plankton ecology and harmful algal dynamics, further research on a variety of dinoflagellate host-parasite systems is needed.