DOI QR코드

DOI QR Code

Comparison between Single and Co-culture of Adipocyte and Muscle Cell Lines in Cell Morphology and Cytosolic Substances

지방과 근육 세포주의 단독 및 공동배양을 통한 세포형태학 및 세포물질 비교 연구

  • Received : 2012.02.27
  • Accepted : 2012.04.24
  • Published : 2012.04.30

Abstract

Present study was performed to investigate the effect of single and co-culture of adipocyte and muscle cell lines on cell differentiation. 3T3-L1 (adipocyte) and L6 (muscle) cell lines were single-cultured on the condition of 10% fetal bovine serum (FBS)/Dulbeco's modified eagle's medium (DMEM) for 48 h followed by culture within 5% FBS/DMEM as a growth media. Then, the growth media was replaced by differentiation media composed of 2% FBS/DMEM without additives in single- or co-culture of the 3T3-L1 and the L6 cells to induce differentiation of both cell types. In co-culture system, the 3T3-L1 and the L6 cells were grown in separated places by being seeded on a $0.4{\mu}m$ insert membrane and on the bottom of 6 well plate, respectively. Cell differentiation was measured using morphological investigation and cytosolic analysis of glycerol-3-phosphate dehydrogenase (GPDH; for 3T3-L1) and creatine kinase (CK; for L6). Based on the GPDH results, the presence of L6 cells did not stimulate 3T3-L1 differentiation showing more differentiation of 3T3-L1 cells in the single-culture compared to the co-culture condition. In contrast, 3T3-L1 cells in the co-culture promoted differentiation of L6 cells. Enzymatic analysis supported this result showing that 3T3-L1 cells showed statistically (P<0.05) higher GPDH activity in the single-culture than the co-culture, whereas CK results of L6 cells were vice versa (P<0.05). Overall, present results may indicate that co-culture system is more reliable and precise technique compared to single-culture. Further studies on several co-culture trials including different media conditions, supplementation of differentiating substances, molecular biological analysis, etc. should be required to obtain practical and fundamental mass data.

본 연구는 기존 단독배양 위주로 이루어져온 세포배양 연구의 방법학적 한계의 극복과 대안을 제시하고자 지방과 근육세포주의 단독 및 공동배양에서 배양기법에 따른 지방 및 근육세포의 분화에 미치는 영향을 비교 조사하고자 실시하였다. 3T3-L1 (지방세포) 및 L6 (근육세포) 세포주는 성장배지인 10% FBS/DMEM (1% Pen-Strep solution 및 0.1% Fungizone 첨가) 하에서 48h 동안 단독배양 후 5% FBS/DMEM에서 배양하였다. 분화를 위한 단독 및 공동배양에서는 지방 및 근육세포 모두 분화유도물질 없이 2% FBS/DMEM으로 배양하였고, 공동배양에서는 $0.4{\mu}m$ insert membrane을 사용하여 6 well plate 하단에 L6 cell을, 상단에는 3T3-L1 cell을 공생시켰다. 지방 및 근육세포 분화정도 측정은 세포별 형태학적 측정과 glycerol-3-phosphate dehydrogenase (GPDH) 및 creatine kinase (CK) 분석을 통해 조사되었다. 형태학적으로 볼때 3T3-L1 세포주는 공동배양보다 단독배양 시 분화가 더욱 잘 일어났고 L6 세포주의 경우 역으로 같았다. 세포물질 분석에서는 분화배지 처리일(day 0)과 비교해 단독 및 공동배양 모두 지방세포 내 GPDH의 활성도가 유의적으로(P<0.05) 증가했음을 확인할 수 있었고 단독배양이 공동배양보다 유의적으로(P<0.05) 높은 수준의 GPDH 활성도를 보였다. L6 역시 마찬가지로 분화배지 처리일에 비하여 단독 및 공동배양 모두 CK 활성도가 유의적으로(P<0.05) 높았고, CK 활성도가 공동배양에서 유의적으로(P<0.05) 높게 나타남을 확인할 수 있었다. 이러한 결과는 기존 연구에서 이용된 단독 배양을 통한 세포 분화 결과 등은 생체와 비교 시 방법학적 한계로 인해 실제 생체 내에서는 그 분화정도가 매우 다를 것으로 생각되며, 이것은 앞으로 정확한 세포배양 결과 확보를 위해서는 단독배양보다는 공동배양기법을 사용해야 함을 의미한다. 향후 다양한 조건과 분화조절 물질들의 첨가를 통한 추가적인 공동배양실험이나 지방분화관련 분자생물학적 물질분석 등 다양한 실험 수행 시 보다 현실적이고 대량의 기초자료 확보가 가능할 것으로 판단된다.

Keywords

References

  1. Ailhaud, G., Grimaldi, P. and Negrel, R. 1992. Cellular and molecular aspects of adipose tissue development. Ann. Rev. Nutr. 12:207-233. https://doi.org/10.1146/annurev.nu.12.070192.001231
  2. Baek, K. H. 2003. Studies on the production of lean meats and the identification of Hanwoo (Korean Cattle) brand beef using immunological techniques. Ph.D. thesis. Yeungnam Univ., Gyeongsan, Korea.
  3. Bernt, E. and Bergmeyer, H. U. 1974. Hexokinase. In : H. U. Bergmeyer and K. Gawehn (Ed.). Methods of enzyme analysis. Academic Press, New York. 473-474.
  4. Brindle, P. K. and Montiminy, M. R. 1992. The CREB family of transcription activators. Curr. Opin. Genet. Dev. 2:199-204. https://doi.org/10.1016/S0959-437X(05)80274-6
  5. Calvo, J. C., Rodbard, D., Katki, A., Chernick, S. and Yanagishita, M. 1991. Differentiation of 3T3-L1 preadipocytes with 3- isobutyl-1-methyl-xanthine and dexamethasone stimulates cellassociated and soluble chondroitin 4-sulfate proteoglycans. J. Biol. Chem. 266:11237-11244.
  6. Cao, Z., West, C., Norton-Wenzel, C. S., Rej, R., Davis, F. B., Davis, P. J. and Rej., R. 2009. Effects of resin or charcoal treatment on fetal bovine serum and bovine calf serum. Endo. Res. 34:101-108. https://doi.org/10.3109/07435800903204082
  7. Choi, C. W. 2011. Sera taken from aged Korean native steers increase adipocyte differentiation. J. Agr. Life Sci. 45(2):85-92.
  8. Choi, C. B., Shin, H. W., Lee, S. W., Kim, S. I., Jung, K. K., Choi, C. W., Baek, K. H., Lunt, D. K. and Smith, S. B. 2008. Comparison of cholesterol contents and fatty acid composition in M. longissimus of Hanwoo, Angus and Wagyu crossbred steers. J. Anim. Sci. & Technol. (Kor.) 50:519-526. https://doi.org/10.5187/JAST.2008.50.4.519
  9. Choi, C. W., Baek, K. H., Smith, S. B., Kim, Y. H., Ford, L. A., Kim, S. J., Oh, Y. K., Kim, K. H., Kang, S. W., Nam, I. S. and Lee, B. S. 2007. Screening of media conditions to establish optimum conditions for 3T3-L1 cells co-cultured with L6 cells. Proceedings of Animal Science & Technology. 2007. 6. 28. Chungang University, Anseong, Gyeonggi.
  10. Chung, K. Y., Park, S. K., Chung, H. J. and Choi, C. B. 2001. Screening of media components to establish optimum conditions for the differentiation of Hanwoo adipocytes. Korean J. Anim. Sci. & Technol. 43(1):65-74.
  11. Darimont, C., Gaillard, D., Ailhaud, G. and Negrel, R. 1993. Terminal differentiation of mouse preadipocyte cell : adipogenic and antimitogenic role of triiodothyronine. Mol. cell. Endocrinol. 98:67-73. https://doi.org/10.1016/0303-7207(93)90238-F
  12. Dietze, D., Koenen, M., Rȍhrig, K., Horikoshi, H., Hauner, H. and Eckel, J. 2002. Impairment of insulin signaling in human skeletal muscle cells by co-culture with human adipocytes. Diabetes. 51: 2369-2376. https://doi.org/10.2337/diabetes.51.8.2369
  13. Dieudonne, M. N., Pecquery, R., Leneveu, M. C. and Giudicelli, Y. 2000. Opposite effects of androgens and estrogens on adipogenesis in rat preadipocytes: Evidence for sex and site-related specificities and possible involvement of insulin-like growth factor 1 receptor and peroxisome proliferator-activated receptor $\gamma$. Endo. 141:649-656. https://doi.org/10.1210/en.141.2.649
  14. Diez, J. and Iglesias, P. 2003. The role of the novel adipocyte-derived hormone adiponectin in human disease. European J. Endo. 148:293-300. https://doi.org/10.1530/eje.0.1480293
  15. Duncan, D. B. 1955. Multiple range and multiple F test. Biometrics. 11:1-42. https://doi.org/10.2307/3001478
  16. Gaben-Cogneville, A., Quignard-Boulange, A., Aron, Y., Brignant, L., Jahchan, T., Pello, J. and Swierczewski, E. 1984. Development under the control of insulin of lipogenic enzymes, lipoprotein lipase, isoproterenol and glucagon sensitivity in differentiating rat preadipocytes in primary culture. Biochem. Biophys. Acta. Nov. 13:252-260.
  17. Greene, E. A. and Allen, R. E. 1991. Growth factor regulation of bovine satellite cell growth in vitro. J. Anim. Sci. 69:146-152.
  18. Gregoire, F. M., Smas, C. M. and Sul, H. S. 1998. Understanding adipocyte differentiation. Physiol. Rev. 78:783-809.
  19. Hausman, G. J. and Poulos, S. P. 2005. A method to establish co-cultures of myotubes and preadipocytes from collagenase digested neonatal pig semitendinosus muscles. J. Anim. Sci. 83: 1010-1016.
  20. Hemmer, W. and Wallimann, T. 1994. Creatine kinase in non-muscle tissues and cells. Mol. Cell. Biochem. 133:193-220. https://doi.org/10.1007/BF01267955
  21. Isgaard, J., Nilsson, A., Vikman, K. and Isaksson, O. G. P. 1989. Growth hormone regulates the level of insulin-like growth factor-I mRNA in rat skeletal muscle. J. Endo. 120:107-112. https://doi.org/10.1677/joe.0.1200107
  22. Ishida, Y., Taniguchi, H. and Baba, S. 1988. Possible involvement of $1{\alpha}$, 25-dihydroxyvitamin D3 in proliferation and differentiation of 3T3-L1 cells. Biochem. Biophys. Res. commun. 151:1122-1127. https://doi.org/10.1016/S0006-291X(88)80482-0
  23. Jarett, L., Wong, E., Macaulay, S. and Smith, J. 1985. Insulin mediators from rat skeletal muscle have differential effects on insulin-sensitive pathways of intact adipocytes. Science. 227: 533-535. https://doi.org/10.1126/science.3917578
  24. Kawada, T., Aoki, N., Kamei, Y., Maeshige, K., Nishiu, S. and Sugimoto, E. 1990. Comparative investigation of vitamins and their analogues on terminal differentiation from preadipocyte to adipocyte, of 3T3-L1 cell. Comp. Biochem. Physiol. 96A: 323-326.
  25. Kozak, L. P. and Jensen, J. T. 1974. Genetic and Developmental Control of Multiple Forms of L-Glycerol 3-Phosphate Dehydrogenase. J. Bio. Chem. 249(24):7775-7781.
  26. Lee, S. C., Kim, D. W., Lee, H. J., Kim, J. W., Hong, S. G. and Chung, Y. H. 1997. Differentiation of adipose stromal-vascular cells from Korean native steers in culture. Korean J. Anim. Sci. & Technol. 39(4):415-422.
  27. Lowry, O. H., Rosebrough, N. J., Farr, A. L. and Randall, R. J. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265-275.
  28. Oh, Y. S., Cho, S. B., Baek, K. H. and Choi, C. B. 2005. Effects of testosterone, $17{\beta}$-estradiol, and progesterone on the differentiaton of bovine intramuscular adipocytes. Asian-Aust. J. Anim. Sci. 18(11):1589-1593.
  29. Oyama. K., Matsuda, K., Torii, S., Matsui, T., Yano, H., Kawada, T. and Ishihara, T. 1998. The interaction between vitamin A and thiazolidmedione on bovine adipocyte differentiation in primary culture. J. Anim. Sci. 76:61-65.
  30. Ramsay, T. G., White, M. E. and Wolverton, C. K. 1989. Insulin-like growth factor 1 induction of differentiation of porcine preadipocytes. J. Anim. Sci. 67:2452-2459.
  31. RDA. 2008. Livestock Research Report. National Instititute of Animal Science, Rural Development Administration. Reg. No. 11- 1390271-000032-10.
  32. Safonova, I., Darimont, C., Amri, E. Z., Grimaid, P., Ailhaud, G., Reichert, U. and Shroot, B. 1994. Retinoids are positive effectors of adipose cell differentiation. Mol. cell. Endocrinol. 104: 201-211. https://doi.org/10.1016/0303-7207(94)90123-6
  33. Skottman, H. and Hovatta, O. 2006. Culture conditions for human embryonic stem cells. Reproduction. 132:691-698. https://doi.org/10.1530/rep.1.01079
  34. Sottile, V. and Seuwen, K. 2001. A high-capacity screen for adipogenic differentiation. Anal. Biochem. 293:124-128. https://doi.org/10.1006/abio.2001.5121
  35. Sztalryd, C., Levacher, C. and Picon, L. 1989. Acceleration by triiodothyronine of adipose conversion of rat preadipocytes from two adipose localizations. Cell. Mol. Biol. 35:81-88.
  36. Wise, L. S. and Green, H. 1979. Participation of one isozyme of cytosolic glycerophosphate dehydrogenase in the adipose conversion of 3T3 cells. The J. Biol. Chem. 254:273-275.
  37. Yeh, W. C., Cao, Z., Classon, M. and Mcknight, S. 1995. Cascade regulation of terminal adipocyte differentiation by three members of the C/EBP family of leucine zipper proteins. Gene & Dev. 9:168-181. https://doi.org/10.1101/gad.9.2.168

Cited by

  1. Suppression of adipogenic differentiation by muscle cell-induced decrease in genes related to lipogenesis in muscle and fat co-culture system vol.37, pp.9, 2013, https://doi.org/10.1002/cbin.10150