• Title/Summary/Keyword: 세종기지

Search Result 79, Processing Time 0.026 seconds

Land-Cover Classification of Barton Peninsular around King Sejong station located in the Antarctic using KOMPSAT-2 Satellite Imagery (KOMPSAT-2 위성 영상을 이용한 남극 세종기지 주변 바톤반도의 토지피복분류)

  • Kim, Sang-Il;Kim, Hyun-Cheol;Shin, Jung-Il;Hong, Soon-Gu
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.5
    • /
    • pp.537-544
    • /
    • 2013
  • Baton Peninsula, where Sejong station is located, mainly covered with snow and vegetation. Because this area is sensitive to climate change, monitoring of surface variation is important to understand climate change on the polar region. Due to the inaccessibility, the remote sensing is useful to continuously monitor the area. The objectives of this research are 1) map classification of land-cover types in the Barton Peninsular around King Sejong station and 2) grasp distribution of vegetation species in classified area. A KOMPSAT-2 multispectral satellite image was used to classify land-cover types and vegetation species. We performed classification with hierarchical procedure using KOMPSAT-2 satellite image and ground reference data, and the result is evaluated for accuracy as well. As the results, vegetation and non-vegetation were clearly classified although species shown lower accuracies within vegetation class.

Mechanisms of Transporting Microplastics near the Antarctic Research Station according to Vertical Motion (연직 운동에 따른 남극 과학기지 인근 해역에서의 미세플라스틱 운송 메커니즘)

  • Kim, Bo-Kyung;Hwang, Jin Hwan
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.95-95
    • /
    • 2022
  • 남극에 상주하는 여러 과학기지 근처 해역에서 5 mm 이하의 크기를 가지는 미세플라스틱이 다량 발견되고 있으며, 그에 따라 과학기지에서 방출하는 방류수가 미세플라스틱의 지역 소스로 여겨지고 있다. 현재는 미세플라스틱의 오염 수준을 이해하는 정도에서 그쳤으며, 미세플라스틱의 물리적인 운송 메커니즘을 이해하고자 하는 시도는 상대적으로 부족한 실정이다. 남극 세종과학기지 근처에서도 미세플라스틱이 발견됨에 따라 본 연구에서는 과학기지 인근인 마리안 소만(Marian Cove)에서의 미세플라스틱 운송 메커니즘을 확인하고자 한다. 연구 대상 지역에서 미세플라스틱의 체류 시간은 짧기 때문에, 미세플라스틱에 생물오손 또는 풍화작용이 일어나기에는 충분하지 않은 시간이다. 따라서, 마리안 소만에서 발견된 미세플라스틱에 대해 연직 속도에 따라 확실히 가라앉는 그룹과 확실히 떠오르는 그룹으로 나누어 입자의 이송 메커니즘을 파악하였다. 해수 유동 모델과 파랑 모델을 결합하여 마리안 소만의 해수 흐름을 재현하였으며, 과학기지 방류 구 위치에서 방출된 미세플라스틱의 이송 경로는 라그랑지안 입자 추적(Lagrangian Particle Tracking) 방법을 이용하였다. 본 연구에서는 미세플라스틱의 궤적을 설명하기 위해 입자의 이송에 영향을 주는 힘을 결정할 수 있는 무차원 수 HK angle을 제안하였으며, 이를 이용하여 마리안 소만에서의 미세플라스틱 이송을 설명하였다. 대상 해역 내에서 확실히 떠오르는 그룹은 표층 흐름을 따라 해안선에 도달하였으며, 확실히 가라앉는 그룹은 방출 직후 빠르게 가라 앉으며 방출 위치 근처인 해저에 집적되었다. HK angle에 따르면, 마리안 소만의 연직 흐름이 강할 경우에는 미세플라스틱의 특성에 관계없이 해수 흐름을 따라 이송됨을 확인하였다. 더 나아가, 조석에 따라 미세플라스틱의 방출 시간을 달리하고, 방출 위치를 달리하여 모의함으로써 마리안 소만과 같이 작은 만에서 미세플라스틱 오염도를 줄이기 위한 적절한 방류수 방출 시간 및 위치를 제안하였다.

  • PDF

Precise GPS Surveying in Antarctica (남극 GPS측량을 위한 최적방법 연구)

  • Shon, Ho-Woong;Park, Joon-Kyu;Park, Eun-Ho
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2009.04a
    • /
    • pp.157-162
    • /
    • 2009
  • Korea established a King Sejong Station in King George Island in 1988. With the establishment of a station, various researches such as geology, biology, geophysics and meteorites have been conducted. Surveying and mapping has been performed since 1990, however, the results had a large errors due to old GPS instrument and autonomous positioning with SA. In this study new GPS surveying was tried using a state-of-the-art GPS instrument and relative positioning.

  • PDF

Time-Lapse Electrical Resistivity Structures for the Active Layer of Permafrost Terrain at the King Sejong Station: Correlation Interpretation with Vegetation and Meteorological Data (세종과학기지 주변 영구동토의 활동층에 대한 시간경과 전기비저항자료의 해석: 기상 및 식생 자료와의 연계해석)

  • Kim, Kwansoo;Lee, Joohan;Lee, Eungsang;Ju, Hyeontae;Hyun, Chang-Uk;Park, Sang-Jong;Kim, Ok-Sun;Lee, Sun-Joong;Kim, Ji-Soo
    • Economic and Environmental Geology
    • /
    • v.53 no.4
    • /
    • pp.413-423
    • /
    • 2020
  • Over the wide area, King Sejong Station and the nearby land are uncovered with snow and ice conditions. Therefore, the active layer on the permafrost has been formed to be much thicker than the other Antarctica region. Electrical resistivity survey of Wenner and dipole-dipole arrays was undertaken at a series of time in the freezing season at the King Sejong Station to delineate subsurface structure and to monitor active layer in permafrost terrain. Time-lapse resistivity structures are well in terms of the vegetation distribution, ground surface temperature, and snow depth. Horizontal high resistivity belt(>1826 Ωm) at very shallow depth is thickening with the lapse of time, probably caused by the freezing of the water in the pore spaces with decrease of ground temperature. Subsurface structures for the area of low snow-cover and vegetated zone area are comprised of 0~0.5 m deep high-resistive gravel-rich soil, 0.5~3 m deep low-resistive active layer, and the underlying permafrost. In contrast, the unvegetated area and high snow-buildup is characterized with high resistivities larger than approximately 2000 Ωm due to freezing of the soil throughout the year. Data interpretation and correlation schemes explored in this paper can be applied to confirm the active layer, which is expected to get thinner in additional survey during the thawing season.

Estimation of R-value and Uniaxial Compressive Strength of Rocks around the King Sejong Station, Barton Peninsula, Antarctica from SilverSchmidt Q-value (실버슈미트 Q값으로부터 남극 바톤반도 세종과학기지 주변 암석의 R값 및 일축압축강도 추정)

  • Lim, Hyoun-Soo;Jang, Bo-An;Kim, Jung-Han;Kang, Seong-Seung
    • Tunnel and Underground Space
    • /
    • v.25 no.2
    • /
    • pp.199-209
    • /
    • 2015
  • The rebound hardness test using the SilverSchmidt hammer was performed for diorite, granodiorite, and andesite exposed around the King Sejong Station, Barton peninsula. Then, the R-value and uniaxial compressive strength (UCS) of these rocks were estimated from the Q-values which were obtained from the SilverSchmidt hammer. The Q-value of diorite was distributed in the range from 67.0 to 89.5, granodiorite of the range from 57.5 to 89.0, and andesite of the range from 58.0 to 76.5. The average Q-values of diorite, granodiorite, and andesite were 76.0, 72.0, and 67.0, respectively. The converted UCS of diorite was distributed in the range from 118 to 195 MPa, granodiorite of the range from 91 to 193 MPa, and andesite of the range from 92 to 148 MPa. The average UCS of diorite, granodiorite, and andesite were 147, 136, and 117 MPa, respectively. The converted R-value of diorite was distributed in the range from 53.0 to 72.2, granodiorite of the range from 45.4 to 71.8, and andesite of the range from 45.8 to 60.9. The average Q-values of diorite, granodiorite, and andesite were 60.0, 58.0, and 53.0, respectively. The R-value was represented approximately 20% lower than the Q-value. In conclusion, it will be possibile that the R-value and UCS of rocks under the extreme area from the SilverSchmidt Q-value are evaluated.

이달의 과학자 - 한국해양연구소 극지연구센터 책임연구원 안인영 박사

  • Korean Federation of Science and Technology Societies
    • The Science & Technology
    • /
    • v.33 no.4 s.371
    • /
    • pp.84-85
    • /
    • 2000
  • 남극해양생물학의 전문가로 91년 해양연구소 극지연구센터에 입소한 이래 계속 남극생물을 연구하고 있는 안인영(43세)박사. 그녀는 지난 수년간 남극 생물중 큰띠조개를 집중적으로 연구하고 있는데 세종기지연구실의 모의자연상태에서 배양실험을 해 본 결과 큰띠조개는 저온과 관계없이 먹이만 풍부하면 온대해역의 홍합에 버금갈 정도로 먹이를 섭취할 수 있다는 사실을 확인했다.

  • PDF

Checkpointing-Recovery Schemes for Mobile Ad-hoc Network Environment (이동 애드-혹 네트워크 환경을 위한 검사점 복구 기법에 관한 연구)

  • Park, Taesoon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2007.11a
    • /
    • pp.560-563
    • /
    • 2007
  • 결함 내성은 신뢰도 있는 이동 컴퓨팅 환경을 구축하기 위한 중요한 요소 중 하나이며, 이동 컴퓨팅 환경을 위한 많은 결함 내성 기법들이 제안 되어졌다. 그러나 대부분의 제안된 기법들은 기지국의 지원과 같은 고정된 네트워크 구조를 기반으로 하는 이동 컴퓨팅 환경을 그 대상으로 한다. 이에 본 논문에서는 기존에 제안된 기법들을 고정된 네트워크 구조를 가지지 않는 이동 애드-혹 네트워크 환경에 적용 시킬 경우 발생 가능한 문제점들을 논의하고, 새로운 네트워크 환경인 애드-혹 네트워크 환경에 적합한 결함 내성 기법들에 관해 논의한다.

Radiative Properties at King Sejong Station in West Antarctica with the Radiative Transfer Model : A Surface UV-A and Erythemal UV-B Radiation Changes (대기 복사 모형에 의한 남극 세종기지에서의 복사학적 특징 : 지표면에서 UV-A와 Erythemal UV-B 자외선 양 변화)

  • Lee, Kyu-Tae;Lee, Bang-Yong;Won, Young-In;Jee, Joon-Bum;Lee, Won-Hak;Kim, Youn-Joung
    • Ocean and Polar Research
    • /
    • v.25 no.1
    • /
    • pp.9-20
    • /
    • 2003
  • A solar radiation model was used to investigate the UV radiation at the surface offing Sejong Station in West Antarctica. The results calculated by this model were compared with the values measured by UV-Biometer and UV-A meter during 1999-2000. In this study, the parameterization of solar radiative transfer process was based on Chou and Lee(1996). The total ozone amounts measured by Breve. Ozone Spectrophotometer and the aerosol amounts by Nakajima et al.(1996) was used as the input data of the solar radiative transfer model. And the surface albedo is assumed to be 0.20 in summer and 0.85 in winter. The sensitivity test of solar radiative transfer model was done with the variation of total ozone, aerosol amount, and surface albedo. When the cosine of solar zenith angle is 0.3, Erythemal UV-B radiation decreased 73% with the 200% increase of total ozone from 100 DU to 300 DU, but the decrease of UV-A radiation is about 1%. Also, for the same solar zenith angle, UV-A radiation was decreased 31.0% with the variation of aerosol optical thickness from 0.0 to 0.3 and Erythemal UV-B radiation was decreased only 6.1%. The increase of Erythemal W-B radiation with the variation of surface albedo was twice that of UV-A increase. The surface Erythemal UV-B and UV-A radiation calculated by solar raditive transfer model were compared with the measured values fer the relatively clear day at King Sejong Station in West Antarctica. The model calculated Erythemal UV-B radiation at the surface coincide well with the measured values except for cloudy days. But the difference between the model calculated UV-A radiation and the measured value at the surface was large because of cloud scattering effect. So, the cloud property data is needed to calculate the UV radiation more exactly at King Sejong Station in West Antarctica.

Preliminary Report on the Ecology of the Penguins Observed in the Cold Years and a Less Cold Year in the Vicinity of King Sejong Station, King George Island off the Antarctic Peninsula (남극 세종기지에서 추운 해와 덜 추운 해에 관찰된 펭귄들의 생태에 관한 1차보고)

  • Chang, Soon-Keun
    • Ocean and Polar Research
    • /
    • v.26 no.1
    • /
    • pp.87-101
    • /
    • 2004
  • This paper delineated the ecology including movement (departure from the rookery and returning to the rookery), egg-laying, and hatch of the penguins occurred in the cold years and a less cold year in the vicinity of King Sejong Station, King George Island off the Antarctic Peninsula. The years of 1988, 1991, 1992, and 1995 were selected as cold years and the year of 2001 was selected as a less cold year based on the mean annual temperature of the years. Gentoo Penguin (Pygoscelis papua) left their rookery in May, meanwhile some remained around the station. They returned in middle-September in the less cold .year, and returned in late-September to early-October in the cold years. Chinstrap Penguin (Pygoscelis antarctica) left their rookery in early-April in the cold years as well as in the less cold year without exception. They returned to the rookery in late-October to early-November in cold years, meanwhile in early-October in the less cold year. This difference in the returning of this bird seems to be related with the exposed sea water, i.e., sea ice condition to feed in the sea. The global warming will lead to the appearance of birds which breed in the Sub-Antarctic. For example, one pair of King Penguin (Aptenodytes patagonicus) was observed in the Maxwell Bay in austral summer. And a pair of snide-like bird was recently observed for the first time in November 2001 at the penguin rookery located in the Barton Peninsula, King George Island. And it will also lead to the disappearance of an Emperor Penguin (Aptenodytes forsteri) which appeared in the full winter when Maxwell Bay and Marian Cove were frozen. It seems that the behaviour of the penguins observed around the station shows the complex effects of the ecology of the birds in combination with the natural environments, which include feeding strategy and areas, animal Instincts, exposed terrain related to weather conditions, and globa1 warming. It is necessary to take further observation and carry out systematic researches on the birds including penguins around the station which show the ecology of the birds as well as the environmental changes.

An Experimental Study of the King Sejong Station and Siberian Frozen Soils (세종기지 및 시베리아 흙의 동결특성 시험)

  • Kim, Youngchin;Shin, Jaewon;Son, Seungmo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.2
    • /
    • pp.5-12
    • /
    • 2009
  • Soil samples from the King Sejong Station in Antarctic and Vladivostok were tested in the laboratory and specific gravity, compaction curve, grain size distribution were determined. The effect of temperature change on the thermal conductivity, unfrozen water content, compressive strength were investigated. In addition, the change of tensile strength with temperature of the soil from Vladivostok was measured. Samples for the compressive strength test and tensional strength test were prepared in a mould with a fixed volume to prevent swelling. Also the effects of temperature and water content change on those strength were compared. Results from the thermal conductivity test showed that thermal conductivity values for both soils was larger at temperatures below freezing than those above freezing. The unfrozen water content dropped rapidly within a temperature range of $0{\sim}-5^{\circ}C$ and then gradually decreased further $-20^{\circ}C$. Compressive strength test results showed various stress/deformation curves with a change in water content. Sandy soil of the King Sejong Station had a much larger strength than ice at an identical temperature, while clayey soil of Vladivostok had a smaller strength than ice in the initial stage, but showed a larger strength at temperatures belows $-15^{\circ}C$. Tensile strength tests revealed an increase in the strength with a decreasing temperature.

  • PDF