• Title/Summary/Keyword: 세사민

Search Result 22, Processing Time 0.035 seconds

The studies on characteristics of the vegetable oils (식물성 식용 유지류의 특성 연구 (참기름을 중심으로))

  • Park, Ilyong;Paeng, Ki-Jung;Jeong, Jin-Il;Min, Seung-Sik;Noh, Mi-Jung;Park, Yoo-Sin;Park, Sung-Woo
    • Analytical Science and Technology
    • /
    • v.18 no.5
    • /
    • pp.444-451
    • /
    • 2005
  • The accurate and simple extraction method for sterols and fatty acids in sesame oil was developed. The new method improved the extraction efficiency of sesamin in sesame oil and the ratio of sesamin over campesterol. It will be applied to judgement of adulteration of plant edible oils. The minor components of sterols were also confirmed. The simultaneous determination of sterols and fatty acids with derivatization were processed, but it was not enough to confirm adulteration, thus need more experiments.

Study on the Changes of Tocopherols and Lignans and the Oxidative Properties of Roasted Sesame Oil during Manufacturing and Storage (볶은 참기름의 제조 및 저장 중 토코페롤과 리그난 함량 변화 및 산화 특성 연구)

  • Lee, Jin-Young;Kim, Moon-Jung;Choe, Eun-Ok
    • Korean Journal of Food Science and Technology
    • /
    • v.40 no.1
    • /
    • pp.15-20
    • /
    • 2008
  • This study investigated the antioxidant content and oxidative properties of roasted sesame oil during manufacturing and storage at $25^{\circ}C$ in the dark for 18 months. The manufacturing steps included pressing of the roasted sesame seeds, and then three filtering steps. Filtering decreased the oil viscosity, but increased free fatty acid content. The peroxide value (POV) was not affected by filtering. Sesamin, sesamolin, and tocopherol levels were significantly higher in the $3^{rd}$ filtered oil as compared to the other oils; however, sesamol content was reduced. The roasted sesame oil oxidized slowly during storage at $25^{\circ}C$ in the dark, and there was no POV change up to 9 months of storage. The levels of sesamol, sesamin, sesamolin, and tocopherols in the oil decreased with storage time, and the tocopherol decomposition rate (-3.04%/month) was higher than that of total lignan compounds (-1.06%/month). Therefore, these results suggest that tocopherols have priority over lignan compounds in performing as antioxidants in roasted sesame oil during storage.

Organic Residues Analysis of Oil Bottle of Goryeo Dynasty Excavated from the Soejeoul Site, Geumneung-dong, Chungju (충주 금릉동 쇠저울유적 출토 고려시대 유병의 유기물 분석)

  • Yun, Eun Young;Kim, Suyeon
    • Journal of Conservation Science
    • /
    • v.37 no.6
    • /
    • pp.638-647
    • /
    • 2021
  • Organic residues are substances derived from diverse natural sources. Recent scientific analysis of organic residues has yielded important information in restoring the lifestyles of ancient peoples. In this study, the organic material contained within the celadon oil bottle of the Goryeo dynasty, excavated from the Soejoul site in Geumneung-dong, Chungju, was analyzed using Fourier-transform infrared spectroscopy (FT-IR) and gas chromatograph-mass spectrometer (GC-MS). The results showed that the organic materials in the bottle were plant-derived oils. In particular, polyunsaturated fatty acids and phytosterols were detected using GC-MS analysis. Sesamin components were also identified. Sesamin, which is a characteristic component of sesame seeds, is a lignan and an antioxidant. As the organic residues in the oil bottle were derived from sesame seeds, it is presumed that sesame oil was stored in the bottle.

Variation of Lignan Content for Sesame Seed Across Origin and Growing Environments (참깨 원산지 및 재배지역에 따른 리그난 함량 변이)

  • Kim, Sung-Up;Oh, Ki-Won;Lee, Myoung-Hee;Lee, Byoung-Kyu;Pae, Suk-Bok;Hwang, Chung-Dong;Kim, Myung-Sik;Baek, In-Youl;Lee, Jeong-Dong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.59 no.2
    • /
    • pp.151-161
    • /
    • 2014
  • Sesame lignan, including sesamin and sesamolin has been reported to have various content according to accessions and environmental factors. The objective of this study were to analyze the lignan variation of 143 sesame accessions from core collection in Korea and to test the effects of growing years and locations on lignan and lipid content of Korea sesame elite lines. The results showed that the core sesame germplasm in Korea has broad variation of lignan content from 2.33 to 12.17 mg/g with an average 8.18 mg/g. Among tested sesame accessions, the IT184615 had the highest lignan content of as 12.17 mg/g. So this accession will be a good genetic resource for developing a high lignan sesame variety. The sesamin and sesamolin content for sesame accessions across origin had significant difference. The average lignan content of accessions collected from Russia (10.0 mg/g) and Nepal (9.08 mg/g) were relatively higher than other countries. The sesamin and sesamolin content for sesame accessions across seed coat color had significant difference. The average lignan content of sesame with white, brown and black seed coat color was 8.61, 7.51, and 5.49 mg/g, respectively. The variation of lignan and lipid content was significantly different across elite lines, locations and growing years. Therefore, it is important to find sesame accessions having high lignan content with environmental stability.

Growth and Seed Quality as Affected by Growing Condition in Sesame (참깨 재배조건에 따른 생육과 품질)

  • 김동관;국용인;천상욱;강명화;이주철;김명석;박규철
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.47 no.6
    • /
    • pp.443-447
    • /
    • 2002
  • This study was carried out to determine the differences in the growth, grain yield, and seed quality of sesame plant according to seeding date between P,E. vinyl-house and outdoor cultures. Reproductive growth period in vinyl-house culture was shorter than in outdoor culture. Stem length and capsule setting length of sesame were much longer in vinyl-house culture than in outdoor culture. Also, number of capsules per plant and 1,000 grain weight in vinyl-house culture were higher, specially the grain yield was approximately 57% more than in outdoor culture. In vinyl house culture, sesame plants sown on June 8 had longer capsule setting length, more capsules per plant, higher 1,000 grain weight, and higher percent ripened grain at the upper part of the capsule settings than those sown in May 9. They also had higher 1,000 grain weight at the middle and lower part of the capsule settings compared to May 9 seeding. However, no difference in grain yield of in seeding dates was observed. In outdoor culture, sesame plants, which was sown on May 9, had more effective branch number and capsule number and plant compared to those sown on June 8. Though sesame plants sown on May 9 had lower percent ripened grain at the upper and middle part of the capsule settings and lower 1,000 grain weight, the seed yield was similar to those sown on June 8. No difference in chromaticity value $L^*$ of sesame seeds between two culture conditions was observed. The $a^*$ value was higher in vinyl-house culture than outdoor culture while $b^*$ value was higher in outdoor culture. Sesaminol triglucoside content of sesame seeds was higher in vinyl-house culture than in outdoor culture. On the other hand, the content of sesamin and sesamolin from sesame seeds in vinyl-house culture were lower than in outdoor culture.

Studies on the physicochemical and biochemical characteristics in sesame seed juice under different roasting conditions (참깨의 볶음 조건이 참깨 착즙액의 이화학적 및 생화학적 특성에 미치는 영향)

  • Park, Hye-Jung;Kim, Ji-Youn;Park, Seong-Hwan;Lee, Sang-Hyeon;Jang, Jeong Su;Lee, Mun Hyon
    • Korean Journal of Food Science and Technology
    • /
    • v.49 no.4
    • /
    • pp.421-429
    • /
    • 2017
  • In this study, we investigated the effect of roasting temperature on nutrient content, digestive enzyme activities, and antioxidative properties of sesame seed juice. The sesame seeds were either roasted at 160, 200, and $240^{\circ}C$ or not roasted, and the juice was extracted using a low-speed juice extractor. Owing to the short duration of roasting, benzo[a]pyrene were not detected and trans fatty acids were negligible detected in all sesame seed juices. The sesame seed juice contained abundant nutrients such as minerals, vitamins, and fatty acids. The contents of minerals, vitamin B1 and B3, and sesamol increased with increase in roasting temperature; however, the levels of fatty acids, vitamin B2, sesamin, and sesamolin decreased. In addition, the antioxidant content and antioxidative activities of sesame seed juice increased with increase in roasting temperature. Therefore, these results suggest that roasted sesame seed juice possesses high antioxidative activities, which may be beneficial for preventing oxidative damage in the body.

Study on Characteristics of Cold-pressed Sesame Oil and Virgin Sesame Oil (냉 압착 참기름과 볶음 압착 참기름의 품질 특성)

  • Kim, Bum-Keun;Lim, Jeong-Ho;Cho, Young-Sim;Park, Kee-Jai;Kim, Jong-Chan;Jeon, Jin-Woong;Jeong, Seong-Weon
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.18 no.5
    • /
    • pp.812-821
    • /
    • 2008
  • The characteristics of cold-pressed sesame oil (CPSO), virgin sesame oil (VSO), commercial heat-press extracted sesame oil (CHPESO) and commercial supercritical fluid extracted sesame oil (CSFESO) were investigated. The total phenolics of CPSO, VSO, CHPESO and CSFESO were 31.27, 68.33, 60.65 and 31.44 mg/100 g, respectively. Their $\gamma$-tocopherol contents were 32.82, 31.66, 29.26 and 26.87 mg/100g, respectively. The sesamol, sesamin, and sesamolin contents of VSO were the highest. The oxidation induction period (4.53 hr) of CPSO was lower than that of VSO, CHPESO and CSFESO (19.90, 16.50, and 12.23 hr, respectively). CPSO was rapidly oxidized during storage at $60^{\circ}C$ in the dark, and its peroxide value (POV) was increased about 14 times. Although there were few differences in electron-donating abilities at low concentrations (below 100 mg%), VSO showed the highest electron-donating abilities at higher concentrations (77.76% at 10,000 mg%). Contents of linolenic acid and oleic acid were $40.35{\sim}43.98$ and $31.59{\sim}33.46\;g$/100 g, respectively. CPSO contained the highest amount of oleic and linoleic acid among the variously extracted sesame oil.

  • PDF

Physicochemical and Sensory Characteristics of Sesame Oils Manufactured in Korea, Japan and China (한국(韓國), 일본(日本), 중국(中國) 삼개국(三個國) 참기름의 이화학적(理化學的) 특성(特性) 및 궁능적(宮能的) 특성(特性))

  • Kim, Hyeon-Wee;Lee, Min-Jung;Kim, Ki-Hong
    • Proceedings of the EASDL Conference
    • /
    • 2004.10a
    • /
    • pp.107-129
    • /
    • 2004
  • Sesame oil has been popular for hundreds of years in Korea because of its pleasant flavor and health benefits and has been studied for its antioxidant properties and flavor preferences attributed to its manufacturing methods. The objective of this study was to investigate the qualitative properties of six commercial sesame oils (3 Korean, 2 Japanese, 1 Chinese), The fatty acids in the oil are composed of two main acids oleic acid and linoleic acid with a P/S ratio of 4.99${\sim}$5.73. Of the tocopherol isomers, ${\gamma}$-toc ranged from 23.14 to 34.85mg/100g. Lignan such as sesamin(322.91${\sim}$689.39ppm) and sesamolin (62.19${\sim}$289.82 ppm) is found predominantly in sesame oil. Sesamol (8.52${\sim}$51.21 ppm) was significantly different depending on manufacturer, observed as greatest in the Korean and least in the Japanese products. The induction period was longest in order of the Korean, Chinese, and then Japanese product. The red and yellow values in Lovibond color were highest in the Korean and lowest in the Japanese product. The major volatile compounds (in order of content) were pyrazines, phenols, aldehydes, and then furans and contained a small amount of pyrroles, thiazoles and indoles. The levels of total volatiles were greatest in the Korean and least in the Japanese product. The most abundant volatiles in the Korean product were pyrazines, whereas phenols were higher in the Chinese product compared to the others. From these results, the relationships among pyrazines, sesamol, yellowness and induction period showed positive, respectively. In sensory evaluation, Korean panelists preferred, in order, the Korean, Japanese, and then the Chinese product in strength of and preference for the sesame flavor, also ranking it best in overall acceptance. Japanese panelists found similarities in the Korean and Japanese products and gave an equal level of preference for the sesame flavor and overall acceptance. On the other hand, Chinese panelists preferred the Japanese product in strength and sesame flavor rating it best on overall acceptance.

  • PDF