Browse > Article
http://dx.doi.org/10.7740/kjcs.2014.59.2.151

Variation of Lignan Content for Sesame Seed Across Origin and Growing Environments  

Kim, Sung-Up (Department of Functional Crops, NICS, RDA)
Oh, Ki-Won (Department of Functional Crops, NICS, RDA)
Lee, Myoung-Hee (Department of Functional Crops, NICS, RDA)
Lee, Byoung-Kyu (Department of Functional Crops, NICS, RDA)
Pae, Suk-Bok (Department of Functional Crops, NICS, RDA)
Hwang, Chung-Dong (Department of Functional Crops, NICS, RDA)
Kim, Myung-Sik (Department of Functional Crops, NICS, RDA)
Baek, In-Youl (Department of Functional Crops, NICS, RDA)
Lee, Jeong-Dong (Division of Plant Biosicences Major in Agronomy, Kyungpook National University)
Publication Information
KOREAN JOURNAL OF CROP SCIENCE / v.59, no.2, 2014 , pp. 151-161 More about this Journal
Abstract
Sesame lignan, including sesamin and sesamolin has been reported to have various content according to accessions and environmental factors. The objective of this study were to analyze the lignan variation of 143 sesame accessions from core collection in Korea and to test the effects of growing years and locations on lignan and lipid content of Korea sesame elite lines. The results showed that the core sesame germplasm in Korea has broad variation of lignan content from 2.33 to 12.17 mg/g with an average 8.18 mg/g. Among tested sesame accessions, the IT184615 had the highest lignan content of as 12.17 mg/g. So this accession will be a good genetic resource for developing a high lignan sesame variety. The sesamin and sesamolin content for sesame accessions across origin had significant difference. The average lignan content of accessions collected from Russia (10.0 mg/g) and Nepal (9.08 mg/g) were relatively higher than other countries. The sesamin and sesamolin content for sesame accessions across seed coat color had significant difference. The average lignan content of sesame with white, brown and black seed coat color was 8.61, 7.51, and 5.49 mg/g, respectively. The variation of lignan and lipid content was significantly different across elite lines, locations and growing years. Therefore, it is important to find sesame accessions having high lignan content with environmental stability.
Keywords
sesame; lignan; variation; origin; location; year;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Zhang, X. R., Y. Z. Zhao, Y. Cheng, X. Y. Feng, Q. Y. Guo, M. D. Zhou, and T. Hodgkin. 2000. Establishment of sesame germplasm core collection in China. Genetic Resources and Crop Evolution. 47(3) : 273-279.   DOI   ScienceOn
2 Ryu, S. N., C. W. Kang, J. I. Lee, S. T. Lee, K. S. Kim, and B. O. Ahn. 1996. Perspective of utilization and function of antioxidants in sesame. Korean Journal of Crop Science. 41(S) : 94-109.
3 SAS. 2009. SAS 9.2 for windows. SAS Institute Inc., Cary, NC, USA.
4 Shahidi, F., C. M. Liyana-Pathirana, and D. S. Wall. 2006. Antioxidant activity of white and black sesame seeds and their hull fractions. Food Chemistry. 99(3) : 478-483.   DOI   ScienceOn
5 Shim, K. B., C. D. Hwang, S. B. Pae, M. H. Lee, T. J. Ha, C. W. Park, and K. Y. Park. 2010. Comparison of physiochemical characters of sesame seeds according to the different producing origin. The Journal of the Korean Society of International Agriculture. 22(4) : 371-375.   과학기술학회마을
6 Shyu, Y. S. and L. S. Hwang. 2002. Antioxidative activity of crude extract of lignan glycosides from unroasted Burma black sesame meal. Food Research International. 35(4): 357-365.   DOI   ScienceOn
7 Tashiro, T., Y. Fukuda, T. Osawa, and M. Namiki. 1990. Oil and minor components of sesame (Sesamum indicum L.) strains. Journal of the American Oil Chemists' Society. 67(8) : 508-511.   DOI   ScienceOn
8 Wang, L., Y. Zhang, P. LI, X. Wang, W. Zhang, W. Wei, and X. Zhang. 2012. HPLC analysis of seed sesamin and sesamolin variation in a sesame germplasm collection in China. Journal of the American Oil Chemists' Society. 89(6) : 1011-1020.   DOI
9 Weiss, E. A. 1983. Sesame. Weiss, EA oilseed crops. London, Longman. 31-99.
10 Osawa T, M. Nagata, M. Namiki, and Y. Fukuda. 1985. Sesamolinol, a novel antioxidant isolated from sesame seeds(Sesamum indicum L). Agricultural and Biological Chemistry. 49 : 3351-3352.   DOI
11 Park, J. H. Development of core collection and its genetic evaluation by SSR markers in germplasm of sesame (Sesamum indicum L.). 2012 Chunbuk National University.
12 Rangkadilok, N., N. Pholphana, C. Mahidol, W. Wongyai, K. Saensooksree, S. Nookabkaew, and J. Satayavivad. 2010. Variation of sesamin, sesamolin and tocopherols in sesame (Sesamum indicum L.) seeds and their hull fractions. Food Chemistry. 122(3) : 724-730.   DOI
13 Rural Development Administration (RDA) Genebank (2011) http://www.genebank.go.kr. Accessed 10 June 2011.
14 Ryu, S. N. 2000. Varietal difference of lignan glycoside content in sesame. Korean Journal of Breeding Science. 32(1) : 104-105..
15 Kim, H. S., K. D. Park, S. B. Bae, Y. K. Son, C. W. Lee, J. G. Kim, J. C. Kim, and J. H. Nam. 2003. Genotype and environment effects on barley grain $\beta$-glucan content. Korean Journal of Breeding Science. 35(2) : 240-241.
16 Kim, J. K., J. K. Bang, C. B. Park, B. K. Lee, and Y. H. Lee. 2001. The variation of quality characteristics in sesame and perilla according to different area and year. Korean Journal of Crop Science. 202-203.
17 Kim, J. S. 1997. Change in isoflavone contents during maturation of soybean seed. Journal of Food Science and Nutrition. 2(3) : 255-258.
18 Kim, K. S., C. G. Park, and J. K. Bang. 2003. Varietal and yearly differences of lignan contents in fruits of collected lines of schizandra chinensis baillon. Korean Journal of Medicinal Crop Science. 11(1) : 71-75.   과학기술학회마을
19 Korean statistical information service. 2013. http://kosis.kr. Statistics Korea.
20 Kim, S. L., M. A. Berhow, J. T. Kim, H. Y. Chi, S. J. Lee, and I. M Chung. 2006. Evaluation of soyasaponin, isoflavone, protein, lipid, and free sugar accumulation in developing soybean seeds. Journal of Agricultural and Food Chemistry.
21 Hanzawa, F., S. Nomura, E. Sakuma, T. Uchida, and S. Ikeda. 2013. Dietary sesame seed and its lignan, sesamin, increase tocopherol and phylloquinone concentrations in male rats. The Journal of Nutrition. 143(7): 1067-1073.   DOI
22 Hata, N., Y. Hayashi, A. Okazawa, E. Ono, H. Satake, and A. Kobayashi. 2010. Comparison of sesamin contents and CYP81Q1 gene expressions in aboveground vegetative organs between two Japanese sesame (Sesamum indicum L.) varieties differing in seed sesamin contents. Plant Science. 178(6) : 510-516.   DOI
23 Ide, T., L. Ashakumary, Y. Takahashi, M. Kushiro, N. Fukuda, and M. Sugano. 2001. Sesamin, a sesame lignan, decreases fatty acid synthesis in rat liver accompanying the downregulation of sterol regulatory element binding protein-1. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids. 1534(1) : 1-13.   DOI   ScienceOn
24 Ide, T., N. Fukuda, T. Aoyama, and T. Hashimoto. 1999. Sesamin, a sesame lignan, is a potent inducer of hepatic fatty acid oxidation in the rat. Metabolism. 48(10) : 1303-1313.   DOI   ScienceOn
25 Kang, C. S., K. H. Kim, S. H. Shin, J. H. Son, J. N. Hyun, K. H. Kim, and C. S. Park. 2013. Influence of cultivar and environment on arabinoxylan content in Korean wheat. Korean Journal of Breeding Science. 45(2) : 81-95.
26 Kanu, P. J. 2011. Biochemical analysis of black and white sesame seeds from China. Am. J. Biochem. Mol. Biol. 1 : 145-157.   DOI
27 Food and Agriculture Organization of the United Nations (FAO). 2012.
28 Kato, M. J, A. Chu, L. B. Davin, and N. G. Lewis. 1998. Biosynthesis of antioxidant lignans in Sesamum indicum L. seeds. Phytochemistry. 47(4) : 583-591.   DOI   ScienceOn
29 Ashri, A. 1998. Sesame breeding. Plant breeding reviews. 16 : 179-228.
30 El-Bramawy, M. A. E. S., S. E. S. El-Hendawy, and W. I. A. Shaban. 2008. Accessing the suitability of morphological and phenological traits to screen sesame genotypes for fusarium wilt and charcoal rot disease resistance. Journal of Plant Protection Research. 48(4) : 397-410.
31 Fukuda, Y., M. Nagata, T. Osawa, and M. Namiki. 1986. Contribution of lignan analogues to antioxidative activity of refined unroasted sesame seed oil. Journal of the American Oil Chemists' Society. 63(8) : 1027-1031.   DOI   ScienceOn
32 Fukuda, Y., T. Osawa, M. Namiki, and T. Ozaki. 1985. Studies on antioxidative substances in sesame seed. Agricultural and Biological Chemistry. 49(2) : 301-306.   DOI
33 Zhang, H. Y., H. M. Miao, C. Li, L. B. Wei, and Q. Ma. 2012. Analysis of sesame karyotype and resemblance-near coefficient. Chinese Plant Bullet 47 : 602-614.
34 Lee, S. W., C. W. Kang, D. H. Kim, Y. Satoko, and K. Masumi. 1999. Varietal variation of sesamin, sesamolin, and oil contents according to seed coat colors in sesame. Korean Journal of Breeding Science. 31(3) : 286-292.
35 Yamashita, K., Y. Lizuka, T. Imai, and M. Namiki. 1995. Sesame seed and its lignans produce marked enhancement of vitamin E activity in rats fed a low $\alpha$-Tocopherol diet. Lipids. 30(11) : 1019-1028.   DOI   ScienceOn
36 Yamashita, K., Y. Nohara., K. Katayama, and M. Namiki. 1992. Sesame seed lignans and gamma-tocopherol act synergistically to produce vitamin E activity in rats. The Journal of Nutrition. 122(12) : 2440-2446.
37 Yasumoto, S. and M. Katsuta. 2006. Breeding a high-lignancontent sesame cultivar in the prospect of promoting metabolic functionality. Japan Agricultural Research Quarterly. 40(2) : 123-129.   DOI
38 Yasumoto, S. and M. Komeichi. 1993. Growth stage affects sesamolin contents in sesame seeds. Japan Journal of Crop Science. 62(S1) : 300-301.   DOI
39 Hata, N., Y. Hayashi, A. Okazawa, E. Ono, H. Satake, and A. Kobayashi. 2012. Effect of photoperiod on growth of the plants, and sesamin content and CYP81Q1 gene expression in the leaves of sesame (Sesamum indicum L.). Environmental and Experimental Botany. 75 : 212-219.   DOI