• 제목/요약/키워드: 세라믹패널

검색결과 22건 처리시간 0.024초

저가보급형 습도조절용 세라믹패널 조습성능 평가 (Evaluation of Humidity Control Performance of Low-Priced Ceramic Panels)

  • 장건영;류동우
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2017년도 춘계 학술논문 발표대회
    • /
    • pp.184-185
    • /
    • 2017
  • In this study, the performance of low-priced ceramic panels developed to improve the poor interior residential environment of the underprivileged was evaluated by comparing them with the performance of I Company (Japan)'s Eco karat, a representative humidity control panel. Experimental results showed that the humidity control performance of the Ceramic panel was 53.33g/㎡, which was about 54% less effective than 98.88g/m2 of the Ecokarat. As a result, it is believed that the need to improve the quality of the Ceramic panels.

  • PDF

저가보급형 습도조절용 세라믹패널의 조습성능 평가 - 리빙랩 온·습도 모니터링 분석을 통한 실측결과를 중심으로 - (Performance Evaluation of Water Vapour Adsorption & Desorption Properties of Low-Priced Generic Ceramic Panel Materials for Humidity Control - Focuses on analyzed measurements of temperature and humidity obtained from the housing units -)

  • 장건영;류동우
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2017년도 추계 학술논문 발표대회
    • /
    • pp.39-40
    • /
    • 2017
  • This study aims to evaluate the humidity control performance of low-priced generic ceramic panels that are used to control humidity. Temperature and humidity are monitored by using 'Living Lab' and the change of indoor relative humidity is measured and analyzed. According to the results of the study, the indoor relative humidity of rooms installed with ceramic panels was found to be low compared to that of living rooms by 2.2%RH (test period) and 3.2%RH (daily). In the case of maximum relative humidity, rooms installed with ceramic panels were found to be low by 6.9%RH. The results are attributable to the humidity absorption of ceramic panels. Accordingly, future ceramic panels need the improvement of performance and an appropriate construction area should be derived depending on indoor space.

  • PDF

습도조절용 세라믹패널 및 도료의 흡·방습성능 평가 (Performance Evaluation of Water Vapour Adsorption & Desorption Properties of Ceramic Panel and Painting Materials for Humidity Control)

  • 장건영;류동우
    • 대한건축학회논문집:구조계
    • /
    • 제34권3호
    • /
    • pp.43-52
    • /
    • 2018
  • This study is conducted to evaluate the performance of ceramic panels and painting materials for humidity control which are developed in non-plastic room temperature hardening structure as part of a project to improve a residential environment for the low-income class, rather than the performance of high-priced humidity control materials that are produced with the existing plasticity processing. The testing methods included the measurements of absorption & desoprtion of humidity per material; Mock-up Testing; an evaluation method of comparing the absorption & desoprtion performances of Ecocarat, ceramic panels and painting materials through Living Lab. According to the measurements of absorption & desoprtion per material, ceramic panels, E panel, and ceramic painting material showed 73.3g/m2, 96.6g/m2, and 111.1g/m2, respectively. That is, the performance of humidity control of each material was found to be good in the order of: Ceramic Paint > E panel > Ceramic Panel. According to performance evaluation testing with Mock-up test and Living Lab, Ceramic Paint, Ecocarat, and Ceramic Panels showed better absorption & desoprtion performances in the order.

태양광 폐실리콘 웨이퍼 회수 실리콘을 활용한 탄화규소 분말 합성 (Synthesis of Silicon Carbide Powder Using Recovered Silicon from Solar Waste Silicon Wafer)

  • 이윤주;권오규;선주형;장근용;최준철;권우택
    • 자원리싸이클링
    • /
    • 제31권5호
    • /
    • pp.52-58
    • /
    • 2022
  • 태양광 폐실리콘 웨이퍼에서 회수한 실리콘과 카본블랙을 활용하여 탄화규소 분말을 제조하였다. 태양광 발전시장에서 결정질 실리콘 모듈이 90% 이상을 차지한다. 태양광 모듈의 사용기한이 도래함에 따라 환경과 경제적인 측면에서 실리콘을 회수하고 활용하는 기술은 매우 중요하다. 본 연구에서는 태양광 폐패널에서 회수한 실리콘을 탄화규소 원료로 활용하기 위하여, 순도 95.74% 폐실리콘 웨이퍼로부터 정제과정을 거쳐 99.99% 실리콘 분말을 회수하였다. 탄화규소 분말 합성특성을 살펴보기 위하여, 정제된 99.99% 실리콘 분말과 탄소분말을 혼합한 후, Ar 분위기에서 열처리(1,300℃, 1,400℃, 1,500℃)과정을 수행하였다. 실리콘과 탄화규소 분말의 특성을 입도분포, XRD, SEM, ICP, FT-IR 및 Raman 분석기를 사용하여 분석하였다.

션트회로에 연결된 압전세라믹을 이용한 복합재료 패널 플리터의 능동 및 수동 제어 (Active and Passive Suppression of Composite Panel Flutter Using Piezoceramics with Shunt Circuits)

  • 문성환;김승조
    • Composites Research
    • /
    • 제13권5호
    • /
    • pp.50-59
    • /
    • 2000
  • 본 논문에서는 복합재료 패널 플러터를 억제할 수 있는 두 가지 방법에 대해서 연구하였다. 첫번째, 능동제어 방법에서는 선형 제어 이론을 바탕으로 제어기를 설계하였으며 제어입력이 작동기에 가해진다. 여기서 작동기로는 PZT를 사용하였다. 두 번째, 인덕터와 저항으로 구성되어진 션트회로를 사용하여 시스템의 감쇠를 증가시킴으로써 패널 플러터를 억제할 수 있는 새로운 방법인 수동감쇠기법에 대한 연구가 수행되었다. 이 수동감쇠기법은 능동적 제어보다 강건(robust)하며 커다란 전원 공급이 필요하지 않고 제어기나 감지 시스템과 같이 복잡한 주변 기기가 필요 없이도 실제 패널 플러터 억제에 쉽게 응용할 수 있는 장점을 가지고 있다. 최대의 작동력/감쇠 효과를 얻기 위해서 유전자 알고리듬을 사용하여 압전 세라믹의 형상과 위치를 결정하였다. 해밀턴 원리를 사용해서 지배 방정식을 유도하였으며, 기하학적 대변형을 고려하기 위해 von-Karman의 비선형 변형률-변위 관계식을 사용하였으며 공기력 이론으로는 준 정상 피스톤 1차 이론을 사용하였다. 4절점 4각형 평판 요소를 이용하여 이산화된 유한 요소 방정식을 유도하였다. 효율적인 플러터 억제를 위해 패널 플러터에 중요한 영향을 미치는 플러터 모드를 이용한 모드축약기법을 사용하였으며, 이를 통해 비선형 연계 모달 방정식이 얻어지게 된다. 능동적 제어 방법과 수동 감쇠 기법에 의해 수행되어진 플러터 억제 결과들을 Newmark 비선형 시분할 적분법을 통해 시간 영역에서 살펴 보았다.

  • PDF

Glass 패널 진공흡착시스템의 유동해석 연구 (Study on Flow Analysis in Glass Panel Vacuum Lift System)

  • 김동균;윤천석
    • 대한기계학회논문집B
    • /
    • 제33권11호
    • /
    • pp.886-893
    • /
    • 2009
  • To develop glass panel vacuum lift system for the post process in module line of FPD(Flat panel display) such as LCD and PDP, new vacuum adsorption parts of this system are proposed. These parts are composed of variable geometry configurations utilizing ceramic porous medium for variable size of glass panels. In order to design this device, detail understanding of flow phenomena in the flow path of vacuum adsorption system is essential. Thus, CFD analysis and designs are performed for several configurations in terms of pressure drop and balancing force at the adsorption side. From the result, new configuration is recommended for optimum design and manufacturing purpose.

다공성 원료를 사용한 수열합성 패널의 흡습 특성 (Hygroscopic Characteristic of Hydrothermal Reacted Panels Using Porous Materials)

  • 추용식;권춘우;송훈;이종규
    • 한국세라믹학회지
    • /
    • 제45권12호
    • /
    • pp.832-838
    • /
    • 2008
  • Diatomite, bentonite and zeolite were used as porous materials for fabricating hygroscopic panels. Moisture adsorption and desorption of porous materials were investigated and hydrothermal method was applied to fabricate panels. Cheolwon diatomite and Pohang zeolite showed excellent characteristics of moisture adsorption and desorption. These characteristics were caused by higher surface area and pore volume of porous materials. Correlation coefficient between surface area and moisture adsorption content of porous materials was 0.93. Moisture adsorption contents were influenced by surface area and pore volume of panels, and surface area more effected on moisture adsorption. Correlation coefficient between surface area and moisture adsorption content of panels was 0.86. Moisture adsorption content of panel with 10% Pohang zeolite was $180\;g/m^2$ and that of 10% Cheolwon diatomite was $170\;g/m^2$. Moisture desorption content of panel with 10% Pohang zeolite was $105\;g/m^2$. Moisture adsorption contents of panel with porous materials were higher than that of panel without porous materials.

다공성 원료를 사용한 수열합성 패널의 물성과 포름알데히드 흡착 특성 (Formaldehyde Adsorption and Physical Characteristics of Hydrothermal Reacted Panels Using Porous Materials)

  • 임두혁;추용식;송훈;이종규
    • 한국세라믹학회지
    • /
    • 제46권6호
    • /
    • pp.627-632
    • /
    • 2009
  • Formaldehyde emissions from the construct was harmful to human. Diatomite, bentonite and zeolite were used as porous materials for fabricating panels. Formaldehyde adsorption and physical characteristics of porous materials were investigated and hydrothermal method was applied to fabricate panels. Formaldehyde adsorption contents of panels with porous materials were higher than that of panel without porous materials. The panels with Cheolwon diatomite and Pohang zeolite showed excellent characteristics of Formaldehyde adsorption. These characteristics were caused by higher surface area and pore volume of porous materials. Formaldehyde adsorption contents were influenced by surface area and pore volume of panels. Correlation coefficient between surface area and Formaldehyde adsorption content of panels was 0.87. The panels with porous materials had higher strength than that without porous materials because of bridging role particles.

다중 션트회로에 연결된 압전세라믹을 이용한 비선형 패널 플러터의 수동적 억제 (Passive Suppression of Nonlinear Panel Flutter Using Piezoceramics with Multi Resonant Circuits)

  • 문성환;김승조
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 춘계학술대회논문집
    • /
    • pp.1204-1209
    • /
    • 2000
  • Many analytical and experimental studies on the active suppression of nonlinear panel flutter by using piezoceramic patch have been carried out. However, these active control methods have a few important problems; a large amount of power is required to operate actuators, and additional apparatuses such as sensor systems and controller are needed. In this study passive suppression schemes for nonlinear flutter of composite panel, which is believed to be more robust suppression system than active control in practical operation, are proposed by using piezoelectric inductor-resistor series shunt circuit. Toward the end, a finite element equation of motion for an electromechanically coupled system is proposed using the Hamilton's principle. To achieve the best damping effect, optimal shape and location of the piezoceramic(PZT) patches are determined by using genetic algorithms. The results clearly demonstrate that the passive damping scheme by using piezoelectric shunt circuit can effectively attenuate the flutter.

  • PDF