• Title/Summary/Keyword: 세기계수

Search Result 288, Processing Time 0.023 seconds

The Curved Interfacial Crack Analysis between Foam and Composite Materials under Anti-plane Shear Force (반평면 전단하중력하에서 곡면형상 접합면을 가지는 폼과 복합재료 접합부의 계면크랙에 관한 연구)

  • 박상현;전흥재
    • Composites Research
    • /
    • v.13 no.4
    • /
    • pp.67-74
    • /
    • 2000
  • The general solution of the anti-plane shear problem for the curved interfacial crack between viscoelastic foam and composites was investigated with the complex variable displacement function. Kelvin-Maxwell three parameter model is used to present viscoelasticity and the Laplace transform was applied to treat the viscoelastic characteristics of foam in the analysis. The stress intensity factor near the interfacial crack tip was predicted by considering both anisotropic and viscoelastic properties of two different materials. The results showed that the stress intensity factor increased with increasing the curvature of the curved interfacial crack and it also increased and eventually converged to a specific value with increasing time. The stress intensity factor increased with increasing the ratio of stiffness coefficients between foam and composites and the effect of fiber orientation on the stress intensity factor decreased with increasing the ratio of stiffness coefficients between foam and composites.

  • PDF

Thermal Shock Stress Intensity Factor and Fracture Test (열충격 응력세기계수와 파괴실험)

  • 이강용;심관보
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.1
    • /
    • pp.130-137
    • /
    • 1990
  • Thermal shock stress intensity factor for an edge-cracked plate subjected to thermal shock is obtained from Bueckner's weight function method. It is shown that thermal shock stress intensity factor has maximum values with variation of time and crack length and that there is most dangerous crack length. By comparing thermal shock stress intensity factor with fracture toughness, the fracture time and critical temperature difference due to thermal shock are determined theoretically. Under constant thermal shock temperature difference, and increase of crack length is shown to increase fracture time. The theoretical fracture time is compared with experimental value measured by acoustic emission method with soda lime glass.

Bounary Element Analysis of Thermal Stress Intensity Factors for Cusp Cracks (커스프 균열에 대한 열응력세기 계수의 경계요소해석)

  • 이강용;조윤호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.1
    • /
    • pp.119-129
    • /
    • 1990
  • In case that the body with a cusp crack is under uniform heat flow, thermal stress intensity factors are calculated by using boundary element method with linearized body force term. The crack surface is under insulated or fixed temperature condition and the types of crack are symmetric lip and airfoil cusps. Numerical values of thermal stress intensity factors for a Griffith crack and cusp cracks in infinite bodies are proved to be in good agreement within .+-.5% when compared with the previous numerical and exact solutions, respectively. The thermal stress intensity factors for symmetric lip and airfoil cusp cracks in finite bodies are calculated about various effective crack lengths, configuration parameters, and heat flow directions. With the same crack surface thermal boundary conditions, heat flow directions and crack lengths, there are no appreciable differences in variations of thermal stress intensity factors between symmetric lip and airfoil cusp cracks. The signs of thermal stress intensity factors for each cusp crack are changed with each crack surface thermal boundary condition.

Boundary Element Analysis of Thermal Stress Intensity Factors for Cusp Crack in Transient State (천이상태에 있는 커스프균열에 대한 열응력세기계수의 경계요소 해석)

  • 이강용;홍정균
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.9
    • /
    • pp.1700-1710
    • /
    • 1992
  • The boundary element method is applied to determine thermal stress intensity factors for a cusp crack in transient state. In the steady temperature field, numerical values of thermal stress intensity factors for a Grifith crack and a symmetric lip cusp crack in a finite body are in good agreement within .+-. 5% with the previous solutions. In transient state, the numerical values of thermal stress intensity factors for the Griffith crack are also in good agreement with the pervious solutions. In both steady and transient states, those for the symmetric lip cusp crack with the crack surface insulated or fixed to the constant temperature are calculates for various effective crack lengths, configuration parameters and uniform heat flow angles. The variations of the thermal boundary conditions of the crack surface have a effect on stress intensity factors. The signs on the values of thermal stress intensity factors can be changed in time variation.

Boundary element analysis of stress intensity factors for Z-shaped cracks (Z형상 균열의 응력세기계수에 대한 경계요소 해석)

  • 이강용;원동성;최형집
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.1
    • /
    • pp.36-43
    • /
    • 1987
  • Stress intensity factors are computed by the boundary element method employing the multiregion technique along with the double-point concept. To demonstrate the validity of the current method, the stress intensity factors of the well-known simple models such as a slanted edge crack and an arcular crack are determined, in advanced, which are proved to be in good agreement within 5% with the pre-existing solutions. Z-shaped cracks are analyzed with various branch crack lengths and branching angles.

Two-Dimensional Approach for Stress Intensity Factor Solution of a Semi-Elliptical Crack (2차원적 해석을 통한 반타원 결함의 응력세기계수 산출)

  • Ho, Kwang-Il;Park, In-Gyu
    • Nuclear Engineering and Technology
    • /
    • v.23 no.1
    • /
    • pp.12-19
    • /
    • 1991
  • An engineering approach for estimating the stress intensity factors of a semi-elliptical crack is presented. An approximate 2-dimensional approach solution for semi-elliptical crack is derived in terms of simple equation, through weight function technique, by reflecting on the physical character of cracks.

  • PDF

Determination of Thermal Shock Stress Intensity Factor for Elliptical Crack by Modified Vainshtok Weight Function Method (수정 Vainshtok 가중함수법에 의한 타원균열의 열충격 응력세기계수의 결정)

  • 이강용;김종성
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.2
    • /
    • pp.463-474
    • /
    • 1995
  • Modified Vainshtok weight function method is developed. The thermal shock stress intensity factors for elliptical surface cracks existed in the thin and thick walled cylinders are determined. The present results are compared with previous solutions and shown to be good agreement with them.

A Study on the Correction of Spectral Line Overlaps for the Determination of Rare Earth Elements by X-Ray Fluorescence Spectrometry (X-선 형광분광법에 의한 희토류원소 분석에서 스펙트럼선 겹침 방해의 보정에 관한 연구)

  • Young-Man Kim;Young-Sang Kim;Yoon-Chang Park;Chong-Wook Lee
    • Journal of the Korean Chemical Society
    • /
    • v.30 no.6
    • /
    • pp.538-547
    • /
    • 1986
  • The 8 rare earth elements were determined in the monazite concentrates by X-ray fluorescence spectrometry. The spectral line overlapping interferences from the other elements were investigated and the correction methods of interferences were studied using line overlap coefficients. The coefficients were calculated from the ratios of the intensities measured at the diffracted angle (2${\theta}$) of the analytical lines of other elements to the intensity of pure rare earth oxide. The coefficients were used to correct the line overlaps by a regression analysis. The linearities of calibration curves from the corrected intensities were remarkably improved, and their standard deviations were decreased. The analytical results agreed with that of the inductively coupled plasma(ICP) spectrometry within an allowable error range.

  • PDF

Measurement of Gain and Gain Coefficient in Photorefractive $BaTiO_3$ crystal (광굴절 $BaTiO_3$ 결정에서의 입사빔의 세기비에 따른 이득 및 이득계수 측정)

  • 손창호;이상조;곽종훈
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2003.02a
    • /
    • pp.252-253
    • /
    • 2003
  • 광굴절 물질은 광학적 위상공액 및 신호처리, 홀로그램 기록소자 및 광정보처리를 포함한 다양한 분야에 응용되고 있다. 또한 광굴절 결정의 광굴절 특성도 실험 및 이론적으로 활발하게 연구되고 있다. 그리고 본 연구에서 사용한 BaTiO$_3$ 결정은 외부에서 인가하는 전기장 없이도 매우 높은 전기광학계수(electrooptic coefficient)를 가지고 있어서 다양한 응용이 기대되는 광굴절 매질이다. 광굴절 결합계수를 측정하게 될 때, BaTiO$_3$ 결정에서의 두 빔의 결합에 대한 이득(gain)의 변화는 물질의 외부적인 특성, 즉 전기광학 텐서와 트랩의 농도 등에 의존할 뿐만 아니라, 외부적으로 조정될 수 있는 변수들, 예를 들면 매질에 입사되는 두 빔사이의 각도, 매질의 광축과 격자벡터 사이의 각도, 그리고 입사된 두 빔의 세기의 비 등에 의존하게 된다. (중략)

  • PDF

Study of the dependence of two-photon-absorption generated free carrier absorption cross-section in GaAs (GaAs의 2광자 여기된 자유전하 흡수 단면적의 빔세기 의존성 연구)

  • 김상천;장준영;전성만;박승한
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2000.08a
    • /
    • pp.252-253
    • /
    • 2000
  • 본 실험에서는 수 MW/$ extrm{cm}^2$ 의 매우 낮은 영역의 세기에서 순수한 GaAs의 bulk에 대하여 실험한 결과 비선형 흡수가 나타남을 관찰 하였으며, 더불어 자유전하 흡수 계수를 여러 가지 세기의 빛에서 측정한 결과 자유전하 흡수 단면적이 빛의 세기에 따라 변화하는 것을 관찰하였다.$^{(1)}$ GaAs의 굴절률이 3.6으로 매우 커서 Fabry-Perot 효과가 나타나므로 시료의 한쪽 면을 SiN로 무반사 코팅을 하여 실험 하였다. GaAs의 표면은 쉽게 레이저 빛에 의해 손상을 입는 것을 고려하여 같은 자리에서 여러 번의 실험을 하여 같은 결과가 나오는 것을 확인하여 실험 결과를 얻었다. 사용된 레이저는 Nd:YAG 레이저로서 1.064 $mu extrm{m}$의 파장에서 7 나노초의 펄스를 방출한다. 빛의 세기는 편광기와 half wave plate를 이용하여 변화 시켰다. (중략)

  • PDF