• 제목/요약/키워드: 세공율

검색결과 73건 처리시간 0.022초

DTO 반응에 미치는 SAPO-34 촉매의 식각 처리 효과 (Effect of Etching Treatment of SAPO-34 Catalyst on Dimethyl Ether to Olefins Reaction)

  • 송강;윤영찬;박주식;김영호
    • 공업화학
    • /
    • 제32권1호
    • /
    • pp.20-27
    • /
    • 2021
  • DTO (dimethyl ether to olefins) 반응에서 촉매의 수명 향상을 목적으로 SAPO-34 촉매의 식각 처리 효과를 연구했다. NH3 수용액은 HCl과 같은 강산 또는 NaOH와 같은 강알칼리 수용액과 비교하여 식각의 진행 정도를 제어할 수 있는 적절한 처리제였다. 따라서 NH3 수용액의 처리 농도와 시간을 변수로 하여 SAPO-34 촉매의 특성과 수명에 미치는 영향을 관찰하였다. NH3 수용액의 처리 농도 또는 시간이 증가함에 따라 SAPO-34 촉매 결정 면의 중심에서부터 침식이 진행되었으며, 점차적으로 산 점 농도와 산 세기가 감소하는 것으로 나타났다. 한편, 적절한 처리 조건에서 SAPO-34 촉매의 외부 표면적과 메조 세공 부피는 증가하는 것으로 나타났다. 처리 농도와 시간이 각각 0.05 M와 3 h일 때, 처리된 SAPO-34 촉매의 수명이 가장 우수했으며 처리 전 촉매와 비교하여 약 36% (DME 전환율 > 90% 기준)까지 크게 향상되었다. NH3 수용액을 이용한 온화한 처리과정에서 SAPO-34 촉매의 식각 진행에 대한 모형을 제안하였다.

콘택트렌즈의 물리화학적 특성에 따른 라이소자임과 알부민의 흡착 특성 (Adsorption Properties of the Lysozyme and Albumin with Physicochemical Properties of the Contact Lens)

  • 성유진;유근창;전진
    • 한국안광학회지
    • /
    • 제18권3호
    • /
    • pp.261-270
    • /
    • 2013
  • 목적: FDA 기준에 의해 분류된 시판용 콘택트렌즈와 실험실에서 제조한 콘택트렌즈의 물리화학적 특성에 따라 라이소자임과 알부민의 흡착 특성을 살펴보고자 한다. 방법: 실험실에서 제조한 렌즈는 HEMA(2-hydroxyethyl methacrylate)와 TRIM(3-(trimethoxysilyl) propyl methacrylate) 등의 모노머를 사용하였으며 캐스트몰드 방법으로 제조하였다. 라이소자임과 알부민을 함유한 인공눈물을 제조하였다. 각각의 렌즈에 대해 흡착시간(48시간)과 인공눈물의 pH(pH 6, 6.8, 7.4, 8.2, 9)에 따라 단백질 흡착량 변화를 추적하고, 콘택트렌즈에 흡착된 각각의 단백질은 HPLC로 정량하였다. 결과: 두 단백질의 흡착에 대한 평형상태 도달하는 시간은 하이드로겔 렌즈에 비해 실리콘하이드로겔 렌즈에서 더 오래 걸렸다. 평형상태에서 두 단백질에 대한 흡착량은 실리콘하이드로겔 렌즈에 비해 하이드로겔 렌즈, 비이온성 렌즈에 비해 이온성 렌즈에서 높게 나타났다. 또한, 고함수 렌즈에서는 라이소자임이, 저함수 렌즈에서는 알부민의 흡착량이 많았으며, 이온성 고함수의 Group IV 하이드로겔 렌즈(H4)에서는 라이소자임만이 흡착되었다. 인공눈물의 pH에 따른 두 단백질의 흡착량은 각 단백질의 등전점에 가까워질수록 증가하였다. 결론: 라이소자임의 흡착량은 콘택트렌즈의 함수율보다는 렌즈 표면의 이온성에 더 큰 영향을 받으며, 알부민은 렌즈 표면의 이온성보다 함수율에 더 많은 영향을 받는다. 실리콘하이드로겔 렌즈에서 단백질의 흡착은 콘택트렌즈의 극성뿐만 아니라 실리콘 모노머에 포함된 Si 원자수와 그 화학적 구조에 의해 결정되는 세공의 크기 등이 함께 고려되어야 한다.

긴구배수로 감세공의 Filp Bucket형 이용연구 (Experimental Study of Flip-Bucket Type Hydraulic Energy Dissipator on Steep slope Channel)

  • 김영배
    • 한국농공학회지
    • /
    • 제13권1호
    • /
    • pp.2206-2217
    • /
    • 1971
  • 본연구(本硏究)는 Dam 또는 여수토(餘水吐) 방수로등(放水路等) 급구배수로(急勾配水路)에 고속(高速)으로 유하(流下)되는 물을 감세처리(減勢處理)하기 (爲)한 감세공형식중(減勢工型式中) 보다도 구조(構造)가 간단(簡單)하고 시공(施工)이 용역(容易)하며 경제성(經濟性)이 높은 Flip Bucket 형감세공(型減勢工)에 의(義)하여 수리특성(水理特性)에 따른 일반적(一般的) 적용조건(適用條件)과 설계시공(設計施工)의 발전(發展)을 도모(圖謀)하기 위(爲)하여 연구(硏究)한 것으로서 그 결과(結果)를 요약(要約)하면 다음과 같다. 1. Flip Bucket의 수리특성(水理特性)과 일반적(一般的) 적용조건(適用條件) Flip Bucket는 일반적(一般的)으로 다음과 같은 조건(條件)을 갖일 때에 채용(採用)할 수 있다. 가. 하류하천(下流河川)의 수위(水位)가 얕어서 도수형(跳水型) 감세공법(減勢工法)을 이용(利用)하며는 막대(莫大)한 공사비(工事費)를 요(要)하게 될 때 나. 하류하천(下流河川)의 하상(河床)이 안정(安定)할 수 있는 양질(良質)의 암반(岩盤)일 경우 다. 하류하천(下流河川)은 여수토(餘水吐) 방수로(放水路)의 중심선(中心線)에 연(沿)하여 적어도 전수두(全水頭)의 $3{\sim}5$배(倍)되는 거리까지는 하심(河心)이 거이 직선(直線)인 여건(與件)에 있을 경우 라. 방사수맥(放射水脈)의 낙하지점(落下地點)을 중심(中心)으로 해서 주위(周圍)에 민가(民家), 경지(耕地), 중요시설물등(重要施設物等)이 없고 수맥낙하(水脈落下)로 인(因)하여 생기는 소음(騷音), 토사붕양(土砂崩壤), 물방울등(等)으로 피해(被害)를 받을 염려(念慮)가 없을 경우 2. 설계(設計) 및 시공상(施工上)의 적용사항(適用事項) 1항(項)과 같은 현지조건(現地條件)을 갖이고 실제(實際) Flip Bucket 형(型)으로 설계(設計) 또는 시공(施工)을 할 경우 고려(考慮)하여야 할 사항(事項)은 가. Bucket의 반경(半徑)(R)은 $R=7h_2$로 적용(適用)이 가능(可能)하다. ($h_2$: Bucket 시점(始點)의 평균수심(平均水深) 나. 본형식(本型式)은 한계지면이하(限界施面以下) 방수로(放水路)의 구배(勾配)가 $0.25<\frac{H}{L}<0.75$의 수로(水路)에서만 채용(採用)한다. 다. 방사수맥(放射水脈)은 가급적(可及的) 하상면(河床面)에 직각(直角)에 가까운 각도(角度)로 낙하(落下)시켜야 하며 그러기 위(爲)해서는 수맥(水脈)을 높이 또는 멀리 방사(放射)시켜야 한다. 상기목적(上記目的)을 만족(滿足)시키는 Flip의 앙각(仰角)은 $\theta=30^{\circ}{\sim}40^{\circ}$를 적용(適用)하는 것이 좋다. 라. 상기(上記) 가${\sim}$다항(項)을 적용(適用)했을 때 유량별(流量別) 방사수맥(放射水脈)의 낙하거리(落下距離)는 그림-4.1에 의(依)하여 쉽게 추정(推定)할 수 있다.(단 실물(實物)에 대(對)한 제량(諸量)의 환산(換算)은 표(表-3.2)에 제시(提示)된 Froude 상사율(相似律)을 적용(適用)할 것) 마. Bucket 부(部)에 Chute Blocks를 설치(設置)하는 것은 방사수맥(放射水脈)의 낙하범위(落下範圍)를 확장(擴張), Energy를 분배(分配)시켜 주므로 하류하상(下流河床)의 세굴심(洗掘深)을 감소(減少)시키는 이점(利點)은 있으나 소맥낙하거리(小脈落下距離)는 다소(多少) 단축(短縮)되는 경향(傾向)이 있다. 바. 수맥낙하점(水脈落下點)에는 세굴(洗掘)에 의(依)한 깊은 Water Cushion을 형성(形成)한다. 최종적(最終的)으로 도달(到達)하는 Water Cushion의 깊이는 하상구성재료(河床構成材料)의 조성(組成)과 재질(材質)에는 거이 무관(無關)하며 단위폭당(單位幅當)의 유량(流量)과 전수두(全水頭)에 따라 소요(所要) 깊이까지 세굴(洗掘)된다. 사. 빈도(頻度)가 잦은 소유량(小流量)에서는 수맥(水脈)의 낙하거리(落下距離)가 단축(短縮)되어 Flip Bucket 하류단(下流端) 직하류(直下流)를 세굴(洗掘)하게 되므 Bucket로 하류단(下流端)은 견고(堅固)한 암반(巖盤)에 충분(充分)한 깊이까지 삽입절연(揷入絶緣)시켜 수맥하부(水脈下部)의 공기유통(空氣流通)을 원활(圓滑)하게 하므로서 Cavitation을 방지(防止)할 수 있다. 지하벽(直下壁)은 보통(普通) Bucket 말단(末端)에서 약(約) $0.3{\sim}0.5m$ 정도(程度)는 수평(水平)으로 하고 수평(水平)과 내각(內角)이 $120^{\circ}{\sim}130^{\circ}$되게 절단(切斷)하여 적당(適當)한 곳에서 수직(垂直)으로 하여 암반(巖盤)에 견고(堅固)히 절연(絶緣)시킨다. 아. 하상(河床)에 돌입(突入)한 고속(高速) Jet는 수두(水頭)의 크기에 따라 막대(莫大)한 Energy의 일부(一部)를 함유(含有)한채 하상면상(河床面上)을 유하(流下)하게 되므로 이 영향(影響)을 받는 하류제방(下流堤防)에는 상당구간(相當區間)까지 사석(捨石) 또는 기타(其他)의 방호조치(防護措置)를 강구(講究)해야 한다. 자. 낙하지점(落下地點)의 조건(條件)으로 보아 자연낙하지점(自然落下地點)보다 더욱 양호(良好)한 지점(地點)이 주위(周圍)에 구비(具備)되어 있을 경우에는 별도(別途)로 수리실험(水理實驗)을 통(通)하여 수맥(水脈)의 변이방법(變移方法)을 강구(講究)해야 한다. 차. 수로(水路)의 중심선(中心線)이 만곡(灣曲)을 갖던가 또는 본연구(本硏究) 범위(範圍)에서 제외(除外)된 구조물(構造物)에서 본형식(本型式)을 계획(計劃)할 때는 별도(別途)로 수리실험(水理實驗)을 행(行)하여야 한다.

  • PDF