• Title/Summary/Keyword: 성토체

Search Result 104, Processing Time 0.03 seconds

A Study on the Pile Material Suited for Pile Supported Embankment Reinforced by Geosynthetics (토목섬유로 보강된 성토지지말뚝 구조에 적합한 말뚝재료의 개발)

  • Choi, Choong-Lak;Lee, Kwang-Wu;Kim, Eun-Ho;Jung, Ji-Won
    • Journal of the Korean Geosynthetics Society
    • /
    • v.15 no.1
    • /
    • pp.21-35
    • /
    • 2016
  • It is a current trend that the concrete track is applied for high speed railway. In the case of the railway embankment constructed on soft ground, the damage to concrete track which is sensitive to settlement such as distortion and deflection could be caused by very small amount of long term settlement. Pile Supported Embankment method can be considered as the effective method to control the residual settlement of the railway embankment on soft ground. The Geosynthetics is used inside of the embankment to maximize the arching effect transmitting the load of the embankment to the top of the piles. But, PHC piles that are generally used for bridge structures are also applied as the pile supporting the load of embankment concentrated by the effect of the Geosynthetics. That is very low efficiency in respect of pile material. So, in this study, the cast in place concrete pile was selected as the most suitable pile type for supporting the embankment by a case study and the optimum mixing condition of concrete using a by-product of industry was induced by performing the mixing designs and the compressive strength designs. And it is shown that the cast in place pile with the optimum mixing condition using the by-product of industry is 2.8 times more efficient than the PHC pile for the purpose of Pile Supported Embankment by the finite element analysis method.

A Theoretical Study on Arching Effect of Embankment Pile Grid (격자배치 성토지지말뚝의 아칭효과에 대한 이론적 연구)

  • Lee, Seung-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.1
    • /
    • pp.302-309
    • /
    • 2017
  • The influence of the pile diameter, center to center pile spacing, internal friction angle of embankment soil, and height of embankment on the arching efficacy of the embankment pile was investigated. The arching efficacy, which was derived by the arch model developed in the embankment soil was calculated using two methods, one that considers crown failure of the arch and the other that considers load on the pile cap and critical relative spacing ratio for which the arching efficacy calculated by the two methods are the same. According to the computed results in this study, the arching efficacy calculated from a consideration of the load on pile cap governs when the relative spacing ratio becomes smaller and that calculated from the theory of crown failure governs when the relative spacing ratio becomes larger. The critical relative spacing ratio below which the arching efficacy calculated from a consideration of the load on pile cap governs the design decreases with increasing value, which is defined by the ratio of the pile diameter to the pile center to center spacing. Critical relative spacing ratios, which correspond to the values of 0.5 and 0.2 were 0.35 and 0.85, respectively. Considering the computed results, the critical relative spacing ratio decreases with increasing Rankine passive earth pressure coefficient and critical relative spacing ratios, which correspond to values of 5 and 2, were 0.23 and 0.85, respectively. The arching efficacy, which corresponds to the area ratio of 9%, was 54% and the one that corresponds to the value of 3 was 61%; the critical relative spacing ratios, which correspond to those arching efficacies, were greater than 0.5.

Characteristics of the Expanded Road Embankment Constructed by Lightweight Air-Mixed Soils for a Short-Term (경랑기포혼합토로 단기간에 시공된 확폭도로성토체의 특성)

  • Hwang, Joong Ho;Ahn, Young Kyun;Lee, Young-Jun;Kim, Tae-Hyung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.4D
    • /
    • pp.377-386
    • /
    • 2010
  • This study was conducted to find out the characteristics of the expanded road embankment constructed by the lightweight air-mixed soil (slurry density $10kN/m^3$) for a short-term without any ground improvement. Compression strength, capillary rise height of the lightweight air-mixed soil and settlement behavior of soft ground were studied. Compression strengths of the specimens sampled at the site after 1 and 5 months of construction were all satisfied the required strength 500 kPa. However, it was not convinced the homogeneity construction, because the values of strength were depending on the sampled location. Also, strength difference between laboratory and site specimens were found about 19%, and thus it should be considered for mixing design. Capillary rise reached about 20 cm for 70 hours because of a numerous tiny pores existed inside the lightweight air-mixed soil. Relationship between settlement and time of the soft ground placed underneath the expanded embankment was estimated by using the measured data and back analysis technique. The current average consolidation ratio and the final settlement after 120 months later were estimated about 32% and 4.5cm, respectively. This settlement is much less value than the allowable settlement 10cm for this structure.

Evaluation of Shear Wave Velocity of Engineering Fill by Resonant Column and Torsional Shear Tests (공진주와 비틂전단시험에 의한 성토지반의 전단파속도 추정에 관한 연구)

  • Park, Jong-Bae;Sim, Young-Jong;Jung, Jong-Suk;Park, Yong-Boo
    • Land and Housing Review
    • /
    • v.2 no.4
    • /
    • pp.387-395
    • /
    • 2011
  • According to the seismic design criteria for structural buildings in Korea, the ground is classified into 5 types based on the average shear wave velocity measured from elastic wave tests on site and seismic load applied to the structure is estimated. However, elastic wave tests in site, however, on the engineering fill, cannot be performed during the construction period. Therefore, to evaluate shear wave velocity considering field conditions, resonant column (RC) and torsional shear (TS) tests are performed and compared with various elastic wave test results. As a result, if confining pressure for the tests using engineering fill are considered properly, we can obtain similar results comparing with those of elastic wave tests. In addition, by considering the effect of maximum shear modulus and confining pressure by RC/TS tests, n values shows typical values ranging from 0.434 to 0.561 so that utilization of RC/TS tests can be useful to infer shear modulus in field.

Case Study on the Treatment of Acid Rock Drainage from an Embankment with Pyrite Rocks (황철석 암버럭을 이용한 고속도로 성토체의 산성배수 처리 사례 연구)

  • Gong, Jeong-Sik;Kim, Tae-Hyung;Song, Young-Suk
    • The Journal of Engineering Geology
    • /
    • v.31 no.4
    • /
    • pp.523-532
    • /
    • 2021
  • The treatment of acid rock drainage was reviewed and evaluated for the case of pyrite rocks distributed in a highway embankment. During the highway's construction, neutralization using alkaline water repellent was applied to the embankment section to prevent acid rock drainage. However, it still occurred long after the construction was completed owing to rain infiltration, and the acid rock drainage polluted the surrounding soils and streams. To solve this problem, treatment facilities such as SAPS (Successive Alkalinity Producing Systems) or ecological wetlands and sand filtration were installed. After the installation of the treatment facilities, the effluent and soils contaminated by acid rock drainage nearby the outlet of the facilities were analyzed and evaluated for a period of years. Measurements of the pH of the effluent and analysis of the heavy metal contamination of the soils confirmed that the neutralization treatment for acid rock drainage is being performed properly and that contamination of heavy metals in the acid rock drainage is also being stably controlled by the treatment facilities.

The Consolidation Behavior on Soft Clay by Numerical Analysis (수치해석에 의한 연약지반의 압밀거동)

  • Kang, Yea Mook;Lee, Dal Won;Lim, Seong Hun;Yoon, Je Shik
    • Korean Journal of Agricultural Science
    • /
    • v.25 no.2
    • /
    • pp.235-246
    • /
    • 1998
  • This study was performed to find the effect of parameters of numerical analysis model. To find the parameters of numerical analysis model, triaxial test and consolidation test were conducted and the results were compared and analyzed with various methods. Preloaded ground was analyzed with Hyperbolic and Modified Cam-Clay models. Hyperbolic model analysis result was good agreement with measured lateral displacement, and Modified Cam-Clay model agreed more than Hyperbolic model with settlement. When the parameters of models were changed, change of settlement on center of embankment and of maximum lateral displacement on distance 5m from end of embankment were compared. On Hyperbolic model the parameter K has large influence on settlement and lateral displacement. On Modified Cam-Clay model the parameters ${\Gamma}$ and M have large influence on settlement and lateral displacement, respectively.

  • PDF

A study on the behavior of cut and cover tunnel by numerical analysis (수치해석 기법을 이용한 복개 터널구조물의 거동에 관한 연구)

  • Lee, Seok-Won;Lee, Gyu-Phil;Bae, Gyu-Jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.5 no.1
    • /
    • pp.43-54
    • /
    • 2003
  • In the deign of cut and cover tunnel, the structural analysis such as rigid frame analysis has been used for its simplicity and convenience. The structural analysis, however, can not consider the geological and geotechnical factors such as soil arching effect. In this study, the dominant factors influencing the behavior of cut and cover tunnel such as interface element, slope of excavation plane, distance between slope and tunnel lining, and location of slope of covered soil, were investigated by the numerical analysis to develop the analysis technique and design technology. Based on the results, the variation of bending moment, shear stress, axial force and displacements were evaluated and analyzed for each factor.

  • PDF

A Case of Field Application of EPS Blocks and Its Performance (EPS블럭의 현장적용에 따른 하부지반의 거동 연구)

  • 장용채
    • Geotechnical Engineering
    • /
    • v.14 no.1
    • /
    • pp.15-28
    • /
    • 1998
  • The use of EPS application to construction field was introduced in this country very recently. Nevertheless, approximately a total of 210,000m3 of EPS application was conducted in less than four years. Main app.lication areas for the EPS method are : (1)backfill behind a bridge abutment constructed on soft clay soil, (2)embankment constructed on soft clay soil, and (3)backfill of gravity wall. Among these, about 70oA of EPS are used for (1) and (2) deb cribed above. In this study, an invesitgation was held for the application of the EPS method to backfill of a bridge abutment which was constructed on soft clay soil. Several instruments were installed around the construction site to invesitgate the behavior of the system. Then a Finite Element Analysis was conducted for comparison.

  • PDF

Experimental Study on Reinforcement Effect of Geosynthetics for Surplus Soil, an Unsuitable Fill Material (성토재료로 부적합한 현장 발생토의 토목섬유 보강효과에 관한 실험적 연구)

  • Hong, Young-Suk;Im, Jong-Chul;Kang, Sang-Kyun;Yoo, Jae-Won;Kim, Chang-Young
    • Journal of the Korean Geosynthetics Society
    • /
    • v.17 no.1
    • /
    • pp.11-20
    • /
    • 2018
  • Surplus soil is commonly used at construction sites, because suitable fill material is not always immediately available and leads to additional costs. However, most surplus soils do not meet the requirement of suitable fill material to achieve the stability and strength of embankments. In this study, Proctor compaction tests and field compaction tests were performed by installing geosynthetics to resolve the problems caused by compacting unsuitable soils. Compaction energy and the number of geosynthetics were changed under the type A- and D- and type A Proctor compaction tests (KS F 2312), respectively. The field compaction testing using geosynthetics was performed on surplus soils of high water content. Optimum water content and maximum dry density of compacted soil decreased and increased by reinforcing geosynthetics, respectively. Compaction curves behaved with geosynthetics as the compaction curves behaved with higher compaction energy. Efficient compaction was possible because the compaction energy increased to 2.10 and 2.71 times the compaction energy required to achieve the same maximum dry density with one and two geosynthetic layer(s), respectively. Furthermore, field compaction tests verified that efficient compaction was possible because the dry density of unsuitable surplus soils of high water content was increased by reinforcing geosynthetics.