• Title/Summary/Keyword: 성토지반

Search Result 478, Processing Time 0.025 seconds

Theoretical Analysis of Soil Arching in Geosynthetic-Reinforced and Pile-Supported Embankment Systems (토목섬유보강 성토지지말뚝시스템의 지반아칭에 관한 이론해석)

  • Hong, Won-Pyo;Lee, Jae-Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.2C
    • /
    • pp.133-141
    • /
    • 2008
  • Theoretical analysis are developed to estimate the load transfer by soil arching in geosynthetic-reinforced and pile-supported(GRPS) embankment systems. According to the results of analyses, the efficiency of embankment pile systems increases when the geosynthetics are installed with piles. Especially the increment of efficiency is more remarkable in the low embankment height, where soil arching can not be fully developed. The factors affecting the load transfer in GRPS embankment systems are the pile spacing, the height and properties of embankments, and the strength of geosynthetics. The efficiency decreases with increasing the pile spacing, while it increases with the height and internal friction angle of embankment fills, and the strength of geosynthetics. These results of analyses show the proposed analysis method is resonable to estimate the soil arching in GRPS embankment systems.

The Behavior of Piled Bridge Abutments Subjected to Lateral Soil Movements - A Study on the Centrifuge Model Tests - (측방유동을 받는 교대말뚝기초의 거동분석 (I) - 원심모형실험 연구 -)

  • 서정주;서동희;정상섬;김유석
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.1
    • /
    • pp.5-19
    • /
    • 2003
  • A series of centrifuge model tests were conducted to investigate the behavior of piled bridge abutments subjected to lateral soil movements induced by approach embankments. The effect of clay layer depth and the rate of embankment construction on piled bridge abutments are the main focus of this study. Tests were performed for two loading types: (1) incremental loading applied in six lifts to the final embankment height; (2) instant loading corresponding to the final embankment height applied in one lift quickly. A variety of instrumentations such as LVDTs, strain gauges, earth pressure transducers, and pore pressure transducers are installed in designed positions in order to clarify the soil-pile interaction and the short- and long-term behavior for piled bridge abutments adjacent to surcharge loads. Based on the results of a series of centrifuge model tests, the distribution of lateral flow induced by staged embankment construction has trapezoidal distribution. The maximum lateral soil pressure is about 0.75$\gamma$H at surcharge loading stage, and about 0.35 $\gamma$H at over 80% consolidated stage.

Characteristics of Lateral Flow due to Embankments for Road Construction on Soft Grounds Using Vertical Drain Methods (연직배수공법이 적용된 연약지반 상에 도로성토로 인한 측방유동의 특성)

  • Hong, Won-Pyo;Kim, Jung-Hoon
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.9
    • /
    • pp.5-15
    • /
    • 2012
  • Field monitoring data for embankments in thirteen road construction sites at coastal area of the Korean Peninsula were analyzed to investigate the characteristics of lateral flow in soft grounds, to which vertical drain methods were applied. First of all, the effect of the embankment scale on the lateral flow was investigated. Thicker soft soils and lager relative embankment scale produced more horizontal displacements in soft grounds. Especially, if thick soft grounds were placed, the relative embankment scale, which was given by the ratio of thickness of soft ground to the bottom width of embankments, became larger and in turn large horizontal displacement was produced. And also higher filling velocity of embankments induced more horizontal displacements in soft grounds. The other major factors affecting the lateral flow in soft ground were the thickness and undrained shear strength of soft grounds, the soil modulus and the stability number. Maximum horizontal displacement was induced by less undrained shear strength and soil modulus of soft grounds. Also more stability numbers produced more maximum horizontal displacements. When the shear deformation does not develop, the stability number was less than 3.0 and the safety factor of bearing was more than 1.7. However, if the stability number was more than 5.14 and the safety factor of bearing was less than 1.0, the unstable shear failure developed in soft ground. 50mm can be recommended as a criterion of the allowable maximum horizontal displacement to prevent the shear deformation in soft ground, while 100mm can be recommended as a criterion of the allowable maximum horizontal displacement to prevent the shear failure in soft ground.

Behavior of Soft Ground Throughout Mock-up Test Using Low Self Weight Banking Method (경량성토 모형시험을 통한 연약지반상의 성토제체의 거동)

  • Kim, Sang Chel
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.6
    • /
    • pp.85-91
    • /
    • 2011
  • This study aims at evaluating feasibility of Bottom ash-mixed Foam Cement Banking(BFCB) Method on the enhancement of soft soil, which is developed to reduce self-weight of banking by applying bottom ash and foam. to cement slurry. In order to measure the behavior of soil when BFCB layer was covered to soft ground, a testing equipment for mock-up test was fabricated and phased loads were applied up to measurement of yielding and ultimate strengths as well as movement of ground particles. In addition, these measured values such as settlement and heaving were compared with ones of surface-hardening method prevailing on soil improvement. As the result through mock-up test, BFCB showed lower values of ground deformation, while wider range of deformation was observed in compare to the other method. And settlement and heaving were measured lower, which implies the method developed is very effective to applicability of soft ground.

A Study on the Effect of Carrying Vertical Loads Over Embankment Piles (성토지지말뚝의 연직하중 분담효과에 관한 연구)

  • 홍원표;이광우
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.4
    • /
    • pp.285-294
    • /
    • 2002
  • Embankment Piles, which is subjected to damage due to lateral movement of soft ground, can be classified into pile slab, cap beam pile, and isolated cap pile according to the installation pattern of pile cap. In the cap beam pile and the isolated cap pile method, the soil arch is developed by the different stiffness between pile and soil, and most embankment loads are transferred into embankment piles through soil arch. In these two methods, the difference of soil arch is that the soil arch of the cap beam pile method develops like the arch from of tunnel between cap beams and the soil arch of the isolated cap pile method develops like dome between isolated caps. Therefore, theoretical analysis methods on soil arching effect of the cap beam pile and the isolated cap pile method were respectively proposed according to their own arch form considering the limiting equilibrium of stresses in a crown of soil arch. And a series of model tests were performed both to investigate the load transfer by soil arching in fills above embankment piles and to verify the reliability of the theoretical analysis.

Interpretation of Soft Ground Deformation under Embankment using the Electrical Resistivity Survey (전기비저항탐사를 이용한 성토하부 연약지반의 변형 해석)

  • Kim, Jae-Hong;Hong, Won-Pyo;Kim, Gyoo-Bum
    • The Journal of Engineering Geology
    • /
    • v.21 no.2
    • /
    • pp.117-124
    • /
    • 2011
  • Soil deformations such as settlement, heaving and lateral flow have frequently happened on marine reclaimed soft grounds due to embankment filling or banking. The electrical resistivity survey was applied to investigate on ground surface such soil deformation without disturbance of ground. A test embankment was performed to assess soil deformation in marine reclaimed soft grounds, where was located at Sihwa area in western coast of Korean peninsula. The soft ground was composed of clayey sediments. After embankment filling, the boundary of soil deformation affected by the filling could be investigated with application of the electrical resistivity survey. The result of electric resistivity survey shows that the extent of deformation is about 5 m laterally to the southern direction of embankment and about 5~6 m vertically in depth, which is about 1-1.2 times of embankment height. This shows that the electric resistivity survey can be applied to interpret the ground deformation in a soft ground region.

Theoretical Analysis of Embankment Loads Acting on Piles (성토지지말뚝에 작용하는 연직하중의 이론해석)

  • 홍원표;이재호;전성권
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.1
    • /
    • pp.131-143
    • /
    • 2000
  • Several theoretical analyses are performed to predict the vertical load on embankment piles with cap beams. The piles are installed in a row in soft ground below the embankment and the cap beams are placed perpendicular to the longitudinal axis of the embankment. Two failure mechanisms such as the soil arching failure and the punching shear failure are investigated according to the failure pattern in embankment on soft ground supported by piles with cap beams. The soil arching can be developed when the space between cap beams is narrow and/or the embankment is high enough. In the investigation of the soil arching failure, the stability in the crown of the arch is compared with that above the cap beams. The factors affecting the load transfer in the embankment fill by soil arching are the space between cap beams, the width of cap beams and the soil parameters of the embankment fill. The portion of the embankment load carried by cap beams decreases with increment of the space between cap beams, while it increases with the embankment height, the width of cap beams, the internal friction angle and cohesion of the embankment fill. Thus, the factors affecting load transfer in embankment should be appropriately decided in order to maximize the effect of embankment load transfer by piles.

  • PDF

Behavior of Soft Ground Improved by Weight of Embankment (단계 성토 하중에 의한 개량된 연약지반의 거동 분석)

  • Jeon, Nam-Soo;Pak, Young;Im, Hui-Dae
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.1190-1193
    • /
    • 2010
  • 본 연구에서는 점토층의 자중압밀을 시행하여 현장강도를 구현하기 위하여 1/70로 축소 모델링하여 원심모형실험을 수행하였으며, 점토구간에 PBD 타설시의 연약지반의 압밀침하거동을 분석하기 위하여서는 1/100로 축소모델링하여 원심모형실험과 전산해석을 실시하였다. 전산해석결과 성토체중심아래의 점토지반의 침하량은 1단계 성토제방하중 하에서 4.8개월 경과 후 최대 침하량은 41.1cm, 2단계 성토하중에서 4.2개월 경과 후의 최대침하량은 78.8, 3단계 성토하중에서 6개월 경과후의 침하량은 93.5cm의 침하가 발생하는 것으로 나타나 수치해석 결과와 원심모형실험결과 값의 유사한 경향을 확인하였다.

  • PDF

Punching Shear Failure in Pile-Supported Embankments (말뚝으로 지지된 성토지반 내 펀칭전단파괴)

  • Hong, Won-Pyo;Song, Jei-Sang;Hong, Seong-Won
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.3
    • /
    • pp.35-45
    • /
    • 2010
  • The mechanism of load transfer by punching shear in pile-supported embankments is investigated. Based on the geometric configuration of the punching shear observed in sand fills on soft ground, a theoretical analysis is carried out to predict the embankment loads transferred on a cap beam according to punching shear developed in pile-supported embankments. The equation presented by the theoretical analysis was able to consider the effect of various factors affecting the vertical loads transferred on the cap beam. The reliability of the presented theoretical equation is investigated by comparing it with the results of a series of model tests. The model tests were performed on cap beams, which had two types of width; one is narrow width and the other is wide width. Sand filling was performed through seven steps. Two types of loading pattern were applied at each filling step; one is the long-term loading, in which sand fills at each filling step were kept for 24 hours, the other is the short-term loading, in which sand fills at each filling step were kept for 2 hours. The vertical loads measured in all model tests show good agreement with the ones predicted by the theoretical equation. Finally, the predicted vertical loads also show good agreement with the vertical loads measured in a well-instrumented pile-supported embankment in field, where cap beams were placed on too wide space.

A Study on Lateral Flow in Soft Grounds under Embankments for Road Constructions (도로 성토로 인한 연약지반의 측방유동에 관한 연구)

  • Kim, Junghoon;Hong, Wonpyo;Lee, Choongmin;Lee, Junwoo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.9
    • /
    • pp.17-29
    • /
    • 2012
  • To investigate the characteristics of shear strength and soil deformation in soft grounds, in which various vertical drains were placed, two hundreds field monitoring data of embankments performed in thirteen road construction sites at west and south coastal areas of the Korean Peninsula were collected. At first, the relationship between settlement and lateral displacement was investigated into three stages, in which embankment construction works were divided into initial filling stage, final filling stage and stage after complete filling. And then, the relationship of surcharge pressures and embankment heights with undrained shear strength of soft grounds were investigated. The investigation on settlement and lateral displacement illustrated that the increment of lateral flow to the increment of settlement was low during initial filling stage, but increased gradually with filling and showed largest during final filling stage. After complete filling, the lateral displacement was converged, even though the settlement was increased continuously. Therefore, most of lateral flow was occurred during embankment filling. The ratio of the lateral displacement increment to the settlement increment was 20% for initial filling stage, which coincided with the one presented by Tavenas et al.(1979), but became 50% for final filling stage, which was half of the one presented by Tavenas et al.(1979). However, the ratio reduced to 1% to 9%, which was quite lower than the one presented by Tavenas et al.(1979). Shear deformations, even shear failures, were predicted in soft grounds under initial undrained shear strength, since the design heights of embankments were higher than the yield height in all the sites. However, embankment construction would be possible since the yield height became higher than the design height due to improvement of shear strength of soft grounds with application of the vertical drains. In order to perform safely embankments for road constructions, the embankment loads should be designed not to be exceed 5.14 times the initial undrained shear strength of soft grounds and to be less than 3.0 times the undrained shear strength improved with application of vertical drains in soft grounds.