• Title/Summary/Keyword: 성능 평가

Search Result 22,405, Processing Time 0.06 seconds

A Method of Reproducing the CCT of Natural Light using the Minimum Spectral Power Distribution for each Light Source of LED Lighting (LED 조명의 광원별 최소 분광분포를 사용하여 자연광 색온도를 재현하는 방법)

  • Yang-Soo Kim;Seung-Taek Oh;Jae-Hyun Lim
    • Journal of Internet Computing and Services
    • /
    • v.24 no.2
    • /
    • pp.19-26
    • /
    • 2023
  • Humans have adapted and evolved to natural light. However, as humans stay in indoor longer in modern times, the problem of biorhythm disturbance has been induced. To solve this problem, research is being conducted on lighting that reproduces the correlated color temperature(CCT) of natural light that varies from sunrise to sunset. In order to reproduce the CCT of natural light, multiple LED light sources with different CCTs are used to produce lighting, and then a control index DB is constructed by measuring and collecting the light characteristics of the combination of input currents for each light source in hundreds to thousands of steps, and then using it to control the lighting through the light characteristic matching method. The problem with this control method is that the more detailed the steps of the combination of input currents, the more time and economic costs are incurred. In this paper, an LED lighting control method that applies interpolation and combination calculation based on the minimum spectral power distribution information for each light source is proposed to reproduce the CCT of natural light. First, five minimum SPD information for each channel was measured and collected for the LED lighting, which consisted of light source channels with different CCTs and implemented input current control function of a 256-steps for each channel. Interpolation calculation was performed to generate SPD of 256 steps for each channel for the minimum SPD information, and SPD for all control combinations of LED lighting was generated through combination calculation of SPD for each channel. Illuminance and CCT were calculated through the generated SPD, a control index DB was constructed, and the CCT of natural light was reproduced through a matching technique. In the performance evaluation, the CCT for natural light was provided within the range of an average error rate of 0.18% while meeting the recommended indoor illumination standard.

The Validity Test of Statistical Matching Simulation Using the Data of Korea Venture Firms and Korea Innovation Survey (벤처기업정밀실태조사와 한국기업혁신조사 데이터를 활용한 통계적 매칭의 타당성 검증)

  • An, Kyungmin;Lee, Young-Chan
    • Knowledge Management Research
    • /
    • v.24 no.1
    • /
    • pp.245-271
    • /
    • 2023
  • The change to the data economy requires a new analysis beyond ordinary research in the management field. Data matching refers to a technique or processing method that combines data sets collected from different samples with the same population. In this study, statistical matching was performed using random hotdeck and Mahalanobis distance functions using 2020 Survey of Korea Venture Firms and 2020 Korea Innovation Survey datas. Among the variables used for statistical matching simulation, the industry and the number of workers were set to be completely consistent, and region, business power, listed market, and sales were set as common variables. Simulation verification was confirmed by mean test and kernel density. As a result of the analysis, it was confirmed that statistical matching was appropriate because there was a difference in the average test, but a similar pattern was shown in the kernel density. This result attempted to expand the spectrum of the research method by experimenting with a data matching research methodology that has not been sufficiently attempted in the management field, and suggests implications in terms of data utilization and diversity.

Developments of Local Festival Mobile Application and Data Analysis System Applying Beacon (비콘을 활용한 위치기반 지역축제 모바일 애플리케이션과 데이터 분석 시스템 개발)

  • Kim, Song I;Kim, Won Pyo;Jeong, Chul
    • Korea Science and Art Forum
    • /
    • v.31
    • /
    • pp.21-32
    • /
    • 2017
  • Local festivals form the regional cultures and atmosphere of communication; they increase the demand of domestic tourism businesses and thus, have an important role in ripple effects (e.g. regional image improvement, tourist influx, job creation, regional contents development, and local product sales) and economic revitalization. IoT (Internet of Thing) technologies have been developed especially, beacon-one of the IoT services has been applied as plenty of types and forms both domestically and internationally. However, notwithstanding expansion of current digital mobile technologies, it still remains as difficult for the individual to track the information about all the local festivals and to fulfill the tourists' needs of enjoying festivals given the weak strategic approaches and advertisement activities. Furthermore, current festival-related mobile applications don't function well as delivering information and have numerous contents issues (e.g. ways of information delivery within the festival places, independent application usage for each festival, one time usage due to one time event). This research, based on the background mentioned above, aims to develop the local festival mobile application and data analysis system applying beacon technology. First of all, three algorithms were developed, namely, 'festival crowding algorithm', 'visitor stats algorithm', and 'customized information algorithm', and then beta test was followed with the developed application and data analysis system. As a result, they could form the database of visitors' types and behaviors, and provide functions and services, such as personalized information, waiting time for festival contents, and 'hot place' function. Besides, in Google Play store, they also got the titles given with more than 13,000 downloads within first three months and as the most exposed application related with festivals; and, thus, got credited with their marketability and excellence. This research follows this order: chapter 2 shows the literature review of local festival related with technology development, beacon service, and festival application. In Chapter 3, design plans and conditions are described of developing local festival mobile application and data analysis system with beacon. Chapter 4 evaluates the results of the beta performance test to verify applicability of the developed application and data analysis system, and lastly, chapter 5 explains the conclusion and suggests the future research.

Estimation of Chlorophyll-a Concentration in Nakdong River Using Machine Learning-Based Satellite Data and Water Quality, Hydrological, and Meteorological Factors (머신러닝 기반 위성영상과 수질·수문·기상 인자를 활용한 낙동강의 Chlorophyll-a 농도 추정)

  • Soryeon Park;Sanghun Son;Jaegu Bae;Doi Lee;Dongju Seo;Jinsoo Kim
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_1
    • /
    • pp.655-667
    • /
    • 2023
  • Algal bloom outbreaks are frequently reported around the world, and serious water pollution problems arise every year in Korea. It is necessary to protect the aquatic ecosystem through continuous management and rapid response. Many studies using satellite images are being conducted to estimate the concentration of chlorophyll-a (Chl-a), an indicator of algal bloom occurrence. However, machine learning models have recently been used because it is difficult to accurately calculate Chl-a due to the spectral characteristics and atmospheric correction errors that change depending on the water system. It is necessary to consider the factors affecting algal bloom as well as the satellite spectral index. Therefore, this study constructed a dataset by considering water quality, hydrological and meteorological factors, and sentinel-2 images in combination. Representative ensemble models random forest and extreme gradient boosting (XGBoost) were used to predict the concentration of Chl-a in eight weirs located on the Nakdong river over the past five years. R-squared score (R2), root mean square errors (RMSE), and mean absolute errors (MAE) were used as model evaluation indicators, and it was confirmed that R2 of XGBoost was 0.80, RMSE was 6.612, and MAE was 4.457. Shapley additive expansion analysis showed that water quality factors, suspended solids, biochemical oxygen demand, dissolved oxygen, and the band ratio using red edge bands were of high importance in both models. Various input data were confirmed to help improve model performance, and it seems that it can be applied to domestic and international algal bloom detection.

An Analytical Study on the Seismic Behavior and Safety of Vertical Hydrogen Storage Vessels Under the Earthquakes (지진 시 수직형 수소 저장용기의 거동 특성 분석 및 안전성에 관한 해석적 연구)

  • Sang-Moon Lee;Young-Jun Bae;Woo-Young Jung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.6
    • /
    • pp.152-161
    • /
    • 2023
  • In general, large-capacity hydrogen storage vessels, typically in the form of vertical cylindrical vessels, are constructed using steel materials. These vessels are anchored to foundation slabs that are specially designed to suit the environmental conditions. This anchoring method involves pre-installed anchors on top of the concrete foundation slab. However, it's important to note that such a design can result in concentrated stresses at the anchoring points when external forces, such as seismic events, are at play. This may lead to potential structural damage due to anchor and concrete damage. For this reason, in this study, it selected an vertical hydrogen storage vessel based on site observations and created a 3D finite element model. Artificial seismic motions made following the procedures specified in ICC-ES AC 156, as well as domestic recorded earthquakes with a magnitude greater than 5.0, were applied to analyze the structural behavior and performance of the target structures. Conducting experiments on a structure built to actual scale would be ideal, but due to practical constraints, it proved challenging to execute. Therefore, it opted for an analytical approach to assess the safety of the target structure. Regarding the structural response characteristics, the acceleration induced by seismic motion was observed to amplify by approximately ten times compared to the input seismic motions. Additionally, there was a tendency for a decrease in amplification as the response acceleration was transmitted to the point where the centre of gravity is located. For the vulnerable components, specifically the sub-system (support columns and anchorages), the stress levels were found to satisfy the allowable stress criteria. However, the concrete's tensile strength exhibited only about a 5% margin of safety compared to the allowable stress. This indicates the need for mitigation strategies in addressing these concerns. Based on the research findings presented in this paper, it is anticipated that predictable load information for the design of storage vessels required for future shaking table tests will be provided.

Impact of Deep-Learning Based Reconstruction on Single-Breath-Hold, Single-Shot Fast Spin-Echo in MR Enterography for Crohn's Disease (크론병에서 자기공명영상 장운동기록의 단일호흡 단발 고속 스핀 에코기법: 딥러닝 기반 재구성의 영향)

  • Eun Joo Park;Yedaun Lee;Joonsung Lee
    • Journal of the Korean Society of Radiology
    • /
    • v.84 no.6
    • /
    • pp.1309-1323
    • /
    • 2023
  • Purpose To assess the quality of four images obtained using single-breath-hold (SBH), single-shot fast spin-echo (SSFSE) and multiple-breath-hold (MBH) SSFSE with and without deep-learning based reconstruction (DLR) in patients with Crohn's disease. Materials and Methods This study included 61 patients who underwent MR enterography (MRE) for Crohn's disease. The following images were compared: SBH-SSFSE with (SBH-DLR) and without (SBH-conventional reconstruction [CR]) DLR and MBH-SSFSE with (MBH-DLR) and without (MBH-CR) DLR. Two radiologists independently reviewed the overall image quality, artifacts, sharpness, and motion-related signal loss using a 5-point scale. Three inflammatory parameters were evaluated in the ileum, the terminal ileum, and the colon. Moreover, the presence of a spatial misalignment was evaluated. Signal-to-noise ratio (SNR) was calculated at two locations for each sequence. Results DLR significantly improved the image quality, artifacts, and sharpness of the SBH images. No significant differences in scores between MBH-CR and SBH-DLR were detected. SBH-DLR had the highest SNR (p < 0.001). The inter-reader agreement for inflammatory parameters was good to excellent (κ = 0.76-0.95) and the inter-sequence agreement was nearly perfect (κ = 0.92-0.94). Misalignment artifacts were observed more frequently in the MBH images than in the SBH images (p < 0.001). Conclusion SBH-DLR demonstrated equivalent quality and performance compared to MBH-CR. Furthermore, it can be acquired in less than half the time, without multiple BHs and reduce slice misalignments.

Prediction of Amyloid β-Positivity with both MRI Parameters and Cognitive Function Using Machine Learning (뇌 MRI와 인지기능평가를 이용한 아밀로이드 베타 양성 예측 연구)

  • Hye Jin Park;Ji Young Lee;Jin-Ju Yang;Hee-Jin Kim;Young Seo Kim;Ji Young Kim;Yun Young Choi
    • Journal of the Korean Society of Radiology
    • /
    • v.84 no.3
    • /
    • pp.638-652
    • /
    • 2023
  • Purpose To investigate the MRI markers for the prediction of amyloid β (Aβ)-positivity in mild cognitive impairment (MCI) and Alzheimer's disease (AD), and to evaluate the differences in MRI markers between Aβ-positive (Aβ [+]) and -negative groups using the machine learning (ML) method. Materials and Methods This study included 139 patients with MCI and AD who underwent amyloid PET-CT and brain MRI. Patients were divided into Aβ (+) (n = 84) and Aβ-negative (n = 55) groups. Visual analysis was performed with the Fazekas scale of white matter hyperintensity (WMH) and cerebral microbleeds (CMB) scores. The WMH volume and regional brain volume were quantitatively measured. The multivariable logistic regression and ML using support vector machine, and logistic regression were used to identify the best MRI predictors of Aβ-positivity. Results The Fazekas scale of WMH (p = 0.02) and CMB scores (p = 0.04) were higher in Aβ (+). The volumes of hippocampus, entorhinal cortex, and precuneus were smaller in Aβ (+) (p < 0.05). The third ventricle volume was larger in Aβ (+) (p = 0.002). The logistic regression of ML showed a good accuracy (81.1%) with mini-mental state examination (MMSE) and regional brain volumes. Conclusion The application of ML using the MMSE, third ventricle, and hippocampal volume is helpful in predicting Aβ-positivity with a good accuracy.

Enhancing the simulation accuracy of long-term runoff models using digital filter methods (디지털 필터 기법을 활용한 장기유출모형 모의 정확도 향상)

  • Lim, Ye-Jin;Bae, Deg-Hyo;Kwon, Hyun-Han;Shin, Hong-Joon
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.10
    • /
    • pp.657-671
    • /
    • 2024
  • The objectives of this study propose a parameter estimation method that can consider both the total runoff and the runoff component by integrating the digital filter method and the long-term runoff models (SWAT, TANK), and evaluate the appropriateness of the applied methods. The study area is the Soyang River Dam basin, and parameter calibration and validation are performed by dividing it into a parameter estimation method considering the total runoff and a parameter estimation method considering the runoff component. In both methods, the fit between the observation and simulation runoff was excellent, and the model performance was found to be good with a coefficient of determination (R2) of 0.73~0.87, and NSE of 0.67~0.85. As a result of comparison with each method, it was confirmed that the simulation accuracy was improved when applying the method considering the runoff component in both the SWAT model and the TANK model. When comparing between the models, the SWAT model showed better statistics in both methods, but the effect of applying to the method was found to be insignificant. However, even though the TANK model did not specifically consider the physical characteristics of the methodology, the statistical value of NSE increased by 17% when integrating a method such as a digital filter. In other words, the applicability to the digital filter method was found to be better in the TANK model, and when a hydrograph separation method such as a digital filter is applied to a conceptual model such as this model, it is judged that more improved simulation results can be obtained than the physical model. Accordingly, it is judged that estimating the parameters by considering the runoff component will be more accurate than estimating the parameters by considering only the total runoff when simulating the hydrological model.

Evaluation of a Compact Dry Method for Enumerating Bacteria in Contaminated Foods (식품 오염 미생물 분석을 위한 컴팩트 드라이법 평가)

  • Soo-Jin Jung;Sangha Han;June Gu Kang;Min Su Song;Hyewon Song;Harim Lee;Jisu Yu;Kyung Ok Lee;Sang-Do Ha
    • Journal of Food Hygiene and Safety
    • /
    • v.39 no.4
    • /
    • pp.304-311
    • /
    • 2024
  • The present study aimed to compare the accuracy of the compact dry and culture plate methods for natural flora (yeasts/molds, coliforms, and total bacterial count) and artificial inoculum (Escherichia coli) in dosirak (meat-based), meal kits (seafood-based), and Doenjang (traditional food). Compact dry TC, EC, CF, and YMR were compared with culture plate methods using a suitable medium for each bacterium. The total bacterial count, coliforms, yeasts/molds, and E. coli were assessed with 3M Petrifilm (aerobic bacterial, coliform, yeast/mold, and E. coli count plates) using culture plate methods. Analysis of the recovery rates of target microorganisms in the three food samples showed that the compact dry method for total bacteria, coliforms, and E. coli exhibited recovery capabilities equivalent to those of the culture plate and Petrifilm methods, with no significant differences (P>0.05). Overall, compact dry TC, CF, and EC showed a good correlation between the methods used in this study, indicating rapid and convenient microbial enumeration by saving time and requiring less space.

Application of K-means Clustering Model to XRD Experimental Data in the Korea Plateau (한국대지 XRD 실험자료 대상 k-평균 군집화 모델 적용성 분석)

  • Ju Young Park;Sun Young Park;Jiyoung Choi;Sungil Kim;Yuri Kim;Bo Yeon Yi;Kyungbook Lee
    • Economic and Environmental Geology
    • /
    • v.57 no.5
    • /
    • pp.529-537
    • /
    • 2024
  • Mineral composition used to identify the sedimentary environment can be obtained through X-ray diffraction (XRD) analysis. However, due to time constraints for analyzing a large number of samples, a machine learning-based mineral composition analysis model was developed. This model demonstrated reasonable reliability for samples with usual compositions but showed poor performance for unusual samples. Consequently, a clustering model has recently been developed to classify the unusual samples, allowing experts to handle. The purpose of this study is to examine the applicability of the clustering model, developed using XRD data from the Ulleung Basin in previous study, using samples from different regions. Research data consist of intensity profile from XRD experiment and its mineral composition analysis for a total of 54 sediment samples from the Korea Plateau, located northwest of the Ulleung Basin. Because the intensity of samples in the Korea Plateau comprises 7,420 values (3.005-64.996°), differing from 3,100 values (3.01-64.99°) of samples in the Ulleung Basin, linear interpolation was used to align the input feature. Then, min-max scaler was applied to intensity profile for each sample to preserve the trend and peak ratio of the intensity. Applying the clustering model to the 54 preprocessed intensity profiles, 35 samples and 19 samples were classified into expert and machine learning groups, respectively. For machine learning group, false positive was zero among the 19 samples. This means that the clustering model can increase reliability in when mineral composition from machine learning model because unusual sample did not belong to the machine learning group. For the 35 samples in expert group, the 31 samples were classified as false negative (FN). It means that although machine learning model can properly analyze these samples, they were assigned to expert group. However, when these FN samples were analyzed using machine learning based composition analysis model, a high mean absolute error of 2.94% was observed. Therefore, it is reasonable that the samples were assigned to expert group.