• Title/Summary/Keyword: 성능한계상태

Search Result 267, Processing Time 0.032 seconds

Safety Analysis of Storm Sewer Using Probability of Failure and Multiple Failure Mode (파괴확률과 다중파괴유형을 이용한 우수관의 안전성 분석)

  • Kwon, Hyuk-Jae;Lee, Cheol-Eung
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.11
    • /
    • pp.967-976
    • /
    • 2010
  • AFDA (Approximate Full Distribution Approach) model of FORM (First-Order Reliability Model) which can quantitatively calculate the probability that storm sewer reach to performance limit state was developed in this study. It was defined as a failure if amount of inflow exceed the capacity of storm sewer. Manning's equation and rational equation were used to determine the capacity and inflow of reliability function. Furthermore, statistical characteristics and distribution for the random variables were analyzed as a reliability analysis. It was found that the statistical distribution for annual maximum rainfall intensity of 10 cities in Korea is matched well with Gumbel distribution. Reliability model developed in this study was applied to Y shaped storm sewer system to calculate the probability that storm sewer may exceed the performance limit state. Probability of failure according to diameter was calculated using Manning's equation. Especially, probability of failure of storm sewer in Mungyeong and Daejeon was calculated using rainfall intensity of 50-year return period. It was found that probability of failure can be significantly increased if diameter is decreased below the original diameter. Therefore, cleaning the debris in sewer pipes to maintain the original pipe diameter should be one of the best ways to reduce the probability of failure of storm sewer. In sewer system, two sewer pipes can flow into one sewer pipe. For this case, probability of system failure was calculated using multiple failure mode. Reliability model developed in this study can be applied to design, maintenance, management, and control of storm sewer system.

Proposed Limit State Design Method for Encased Composite Columns (매립형 합성기둥의 한계상태설계법 제안)

  • Kim, WonKi
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.4 s.33
    • /
    • pp.523-533
    • /
    • 1997
  • Current limit state design method for encased composite columns contains irrational and uncertain design equations in defining section and material properties of composite members. Through investigating previous research used in formulating the design equation, this paper explores the irrationality and uncertainty such as 1) transformation of yield stress and elastic modulus for composite section, 2) an equation influencing buckling strength in terms of area rather than moment of inertia, and 3) selection of larger radius of gyration between steel and concrete sections. Improving the design equations this paper proposes two design methods which can be directly used in practical design.

  • PDF

Limit State Evaluation of Elbow Components Connected with Flexible Groove Joints (유동식 그루브 조인트로 연결된 엘보 요소의 한계상태 평가)

  • Sung-Wan Kim;Da-Woon Yun;Bub-Gyu Jeon;Dong-Uk Park;Sung-Jin Chang
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.3
    • /
    • pp.91-99
    • /
    • 2024
  • Piping systems are crucial facilities used in various industries, particularly in areas related to daily life and safety. Piping systems are fixed to the main structures of buildings and facilities but do not support external loads and serve as non-structural elements performing specific functions. Piping systems are affected by relative displacements owing to phase differences arising from different behaviors between two support points under seismic loads; this can cause damage owing to the displacement-dominant cyclic behavior. Fittings and joints in piping systems are representative elements that are vulnerable to seismic loads. To evaluate the seismic performance and limit states of fittings and joints in piping systems, a high-stroke actuator is required to simulate relative displacements. However, this is challenging because only few facilities can conduct these experiments. Therefore, element-level experiments are required to evaluate the seismic performance and limit states of piping systems connected by fittings and joints. This study proposed a method to evaluate the seismic performance of an elbow specimen that includes fittings and joints that are vulnerable to seismic loads in vertical piping systems. The elbow specimen was created by connecting straight pipes to both ends of a 90° pipe elbow using flexible groove joints. The seismic performance of the elbow specimen was evaluated using a cyclic loading protocol based on deformation angles. To determine the margin of the evaluated seismic performance, the limit states were assessed by applying cyclic loading with a constant amplitude.

A Study on Operating Limit Analysis for Small High-speed Boat (소형 고속정의 운항한계에 대한 연구)

  • BAE, Jun-Young
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.21 no.6
    • /
    • pp.784-789
    • /
    • 2015
  • It was carried out a review of operating limit analysis for small high-speed boat by author. In general, a review of ship's seakeeping performance is performed in the step of ship design, but this study was carried out in the state of completion of boat. Motion performance of Pitch, Vertical and Lateral acceleration and Slamming were satisfied in some encounter angle but deck wetness was not satisfied in all it does the analysis. As a result, sea state rather than the speed and encounter angle of vessel have a greater effect on the seakeeping performance of target vessel. It seems to be due to the size of the target ship.

The Numerical Study on Capacity Evaluation of Exposed Steel Column-Base Plate Connection (노출형 철골기둥-베이스 플레이트 접합부의 내력평가를 위한 수치적 연구)

  • Lee, Kwang-Ho;You, Young-Chan;Choi, Ki-Sun;Koo, Hye-Jin;Yoo, Mi-Na
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.5
    • /
    • pp.26-34
    • /
    • 2016
  • The failure modes of steel column-base plate connection arranged on the basis of AISC Design Guide-#1 and -#10 are base plate tension and compression side flexural yielding, yielding, pull-out and shear failure of anchor rod, concrete crushing in concrete footing and steel column yielding. The bending moment capacity and failure mode in this connection are predicted using limit-state function and we compare these results and test result. In the case that thickness of base plate is relatively thick, bending moment capacity and failure mode in steel column-base plate connection accurately predicted. But in the case that thickness of base plate is relatively thin and axial force do not exist, prediction of failure mode in this connection is somewhat inaccurate.

Fragility Contour Method for the Seismic Performance Assessment of Generic Structures (지진 취약성 등고선을 이용한 내진성능 평가 방법)

  • Jeong, Seong-Hoon;Lee, Ki-Hak;Lee, Do-Hyung
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.15 no.3
    • /
    • pp.65-72
    • /
    • 2011
  • Extensive computer simulations to account for the randomness in the process of seismic demand estimation have been a serious obstacle to the adoption of probabilistic performance assessments for the decision of applying seismic intervention schemes. In this study, a method for rapid fragility assessments based on a response database and the fragility contour method are presented. By the comparison of response contours in different formats, it is shown that representing maximum responses in ductility demand is better for the investigation of the effect of structural parameter changes on seismic demands than representations in absolute values. The presented fragility contour enables designers to practically investigate the probabilistic performance level of every possible retrofit option in a convenient manner using visualized data sets. This example demonstrates the extreme efficiency of the proposed approach in performing fragility assessments and successful application to the seismic retrofit strategies based on limit state probabilities.

Reliability-based calibration for performance-based design of concrete structures with material and member resistance factors (재료저항계수와 부재저항계수를 적용한 콘크리트 성능설계의 신뢰도기반 계수보정)

  • Paik, In-Yeol;Shin, Soo-Bon;Bang, Dae-Jae
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.145-148
    • /
    • 2008
  • Recently, most of the international design code for concrete structures are trying to develope performance-based design specification with the limit state concept. To accomplish this object, it is necessary to define required performance and to measure the performance level of structure. The reliability index is one of the most attractive indexes to express the level of performance. In this paper, prestressed concrete beam is designed following member resistance factor and material resistance factor format and the reliability indexes are obtained and compared for different sets of resistance factors. Compatible sets of safety factors could be calibrated for given level of target reliability index applying the similar method presented in this paper.

  • PDF

Prediction of Structural Behavior of FRP Rebar Reinforced Concrete Slab based on the Definition of Limit State (한계상태 정의에 따른 FRP Rebar 보강 콘크리트 슬래브의 구조거동 예측)

  • Oh, Hongseob;Kim, Younghwan;Jang, Naksup
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.40 no.4
    • /
    • pp.371-381
    • /
    • 2020
  • The failure mode of concrete reinforced with FRP is defined as the concrete crushing and the fiber rupture and the definition of limit state is a slightly different according to the design methods. It is relatively difficult to predict of FRP reinforced concrete because the mechanical properties of fibers are quite depending on its of fibers. The design code by ACI440 committee, which has been developed mainly on GFRP having low modulus of elasticity, is widely used, but the applicability on other FRPs of this code has not been sufficiently verified. In addition, the ultimate and serviceability limit state based on the ACI440 are comparatively difficult to predict the behavior of member with the 0.8~1.2 𝜌b because crushing and rupturing failure can be occurred simultaneously is in this region of reinforcement ratio, and predicted deflection is too sensitive according to the loading condition. Therefore, in this study, reliability and convenience of the prediction of structural performance by design methods such as ACI440 and MC90 concept, respectively, were examined through the experimental results and literature review of the beam and slab with the reinforcement ratio of 0.8 ~ 1.4. As a result of the analysis, it can be applied to the FRP reinforced structure in the case of the simple moment-curvature formula (LIM-MC) of Model Code, and the limit state design method based on the EC2 is more reliable than the ultimate strength design method.

A Dynamic Server Load Balancing based on Power Information for Saving Energy in a Server Cluster Environment (서버 클러스터 환경에서 에너지 절약을 위한 전력 정보 기반의 동적 서버 부하분산)

  • Kim, Dong-Jun;Kang, Na-Myong;Kwon, Hui-Ung;Kwak, Hu-Keun;Kim, Young-Jong;Chung, Kyu-Sik
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2011.04a
    • /
    • pp.171-174
    • /
    • 2011
  • 서버 클러스터에서 부하 분산기는 사용자의 요청을 각 서버로 분산시키는 역할을 한다. 리눅스 가상 서버(LVS: Linux Virtual Server)는 소프트웨어적으로 사용되는 부하 분산기로서 여러 가지 스케줄링 방식들을 가지고 있다. 그러나 부하 분산 시에 서버의 유동적인 부하 정보를 반영하지 못하는 단점이 있다. 이에 개선된 방식으로 서버의 동시 연결 개수에 따라 상한계(Upper Bound)와 하한계(Lower Bound)를 설정하고, 요청을 분산하는 동적 스케줄링(Dynamic Scheduling)이 존재한다. 그러나 서버의 상태에 따라 상한계와 하한계가 바뀔 수 있음에도 불구하고 이 값들이 고정되어 있다는 단점을 가진다. 본 논문에서는 기존 부하 분산 방법의 단점을 극복하는 서버 전력 정보에 기반한 스케줄링 방식을 제안한다. 제안된 방식은 서버의 부하 정보를 기반으로 에너지를 추정하고 전력 수치를 기반으로 LVS의 가중치 테이블을 주기적으로 갱신한다. 그리고 부하 분산기는 클라이언트로부터 요청 받은 트래픽을 각 서버의 에너지 소모 상태에 따라 적용시킴으로써 에너지 소모가 최소화되도록 부하를 분산한다. 또한 서버의 상태에 따라 상한계와 하한계가 바뀔수 있음을 고려하여 상한계와 하한계를 설정하지 않고 서버의 상태에 따라 적절하게 요청이 분배되도록 하였다. 15대의 PC를 사용하여 실험을 수행하였으며, 실험 결과는 기존 부하 분산 알고리즘 중 성능이 가장 좋은 알고리즘에 비해 서버의 성능이 동일한 경우 성능 및 소비전력 면에서 거의 동등하였고, 서버의 성능이 상이한 경우 50.2% 성능 향상 및 27.3% 소비 전력 절감을 확인하였다.

A Study on the Static and Dynamic Characteristics of Raised Girder Bridges (양각 거더교의 정적·동적특성에 관한 연구)

  • Ji-Yeon Lee;Sung Kim;Sung-Jin Park
    • Journal of the Society of Disaster Information
    • /
    • v.19 no.4
    • /
    • pp.851-858
    • /
    • 2023
  • Purpose: A study was conducted to ensure the structural safety of a raised girder bridge with improved cross-sectional efficiency compared to the conventional PSC girder. For this purpose, the cross-sectional specifications such as girder length, height, and width were determined, the arrangement of the tendons was designed, and the practical performance of the raised girder under static and dynamic loads was verified. Method: The static performance experiment examined the serviceability limit state by measuring behavioral responses such as deflection and cracking to primary and secondary static loads. In addition, the dynamic load loading experiment measured the acceleration and displacement behavior response over time to calculate the natural frequency and damping ratio to examine the usability limit state. Result: As a result of the static performance test, the deflection value based on the maximum applied load showed stable behavior, and the crack width measured at the maximum applied load level was very small, satisfying the serviceability limit state. In addition, a natural frequency exceeding the natural frequency calculated during the design of the dynamic loading experiment was found, and a damping ratio that satisfies the current regulations was found to be secured.