딥러닝(Deep learning) 기법은 패턴분석, 이미지분류 등 다양한 분야에서 높은 성과를 나타내고 있다. 특히, 주식시장 분석문제는 머신러닝 연구분야에서도 어려운 분야이므로 딥러닝이 많이 활용되는 영역이다. 본 연구에서는 패턴분석과 분류능력이 높은 딥러닝의 일종인 합성곱신경망(Convolutional Neural Network) 모델을 활용하여 주가방향 예측방법을 제안한다. 추가적으로 합성곱신경망 모델을 효율적으로 학습시키기 위한 속성선택(Feature Selection, FS)방법이 적용된다. 합성곱신경망 모델의 성과는 머신러닝 단일 분류기와 앙상블 분류기를 벤치마킹하여 객관적으로 검증된다. 본 연구에서 벤치마킹한 분류기는 로지스틱 회귀분석(Logistic Regression), 의사결정나무(Decision Tree), 인공신경망(Neural Network), 서포트 벡터머신(Support Vector Machine), 아다부스트(Adaboost), 배깅(Bagging), 랜덤포레스트(Random Forest)이다. 실증분석 결과, 속성선택을 적용한 합성곱신경망이 다른 벤치마킹 분류기보다 분류 성능이 상대적으로 높게 나타났다. 이러한 결과는 합성곱신경망 모델과 속성선택방법을 적용한 예측방법이 기업의 재무자료에 내포된 가치를 보다 정교하게 분석할 수 있는 가능성이 있음을 실증적으로 확인할 수 있었다.
인천도시철도 1호선 검단연장선 1공구 건설공사는 국내 최초로 로드헤더와 TBM 장비가 함께 적용되었다. 쉴드TBM 터널 구간은 1,057 m이며, 대부분 암반으로 구성 되어있으며 공항철도 및 경인아라뱃길 하부 터널 구간 공사를 포함하고 있다. 굴진을 위해 7.8 m 토압식 쉴드TBM 장비가 투입되었으며, 상·하선 구간의 평균 월굴진율은 239.1 m이고, 최대 월굴진율은 334.5 m이다. 본 기술기사에서는 인천도시철도 1호선 검단연장선 1공구 쉴드TBM 터널 굴진 실적을 중심으로 쉴드TBM의 생산성을 종합적으로 평가해 보았으며, 성공적인 쉴드TBM 터널 공사 수행에 있어서 유용한 자료를 제공하고자 한다.
디지털 기술의 발전으로 브랜드와 소비자 간 커뮤니케이션 방식이 혁신적으로 변화하고 있다. 이러한 변화의 일환으로, 나이키와 아디다스와 같은 스포츠 브랜드들은 자체 러닝 앱을 통해 소비자들과 상호작용을 강화하고, 브랜드 경험을 통한 충성도 강화에 노력하고 있다. 하지만 이러한 브랜드 자체 플랫폼이 충성도 및 옹호도에 미치는 직접적 영향과 개선점에 대한 심도 깊은 연구는 더 많이 필요한 상황이다. 이에 본 연구는 2020년 1월부터 2023년 10월까지의 나이키 런 클럽(NRC)과 아디다스 런타스틱 앱 영어 리뷰 3,715건을 텍스트 마이닝 기법으로 분석하고, 브랜드 플랫폼이 소비자 충성도와 옹호에 끼치는 영향을 살펴보고자 하였다. 특히 '추천 리뷰' 155건에 대해 감성 분석 및 토픽모델링으로 심층 비교 분석하여, '핫 로열티'를 일으키는 이유와 두 브랜드에 대한 소비자 인식의 차이점을 찾고자 하였다. 그 결과 NRC는 개인화된 코칭과 감성적 교류를 제공하는 '동반자'로, 아디다스 런타스틱은 기능적 신뢰성에 초점을 맞춘 '도구'로 인식되는 차이를 발견했다. 이는 유사 기능의 앱에 대해서도 브랜드 별 소비자 인식과 성향은 다양할 수 있음을 시사하며, 브랜드 관리자는 이러한 차이를 플랫폼 디자인 및 기획에 세심하게 반영해야 함을 강조한다. 더불어, 기술적 오류가 브랜드에 대한 부정적 인식으로 직접 이어지는 경향이 공통적으로 확인되어, 앱 성능 개선과 관리의 중요성을 부각시킨다. 본 연구는 브랜드별 소비자 성향 파악과 그에 따른 맞춤 기술 도입이 브랜드 충성도와 옹호에 영향을 끼친다는 점을 실질적 데이터를 기반으로 보였다는 점에서 기존 연구 및 실무에 새로운 통찰과 실행 가이드 제공으로 기여한다.
본 연구는 교전급 분석모델을 활용하여 현재 보유 중인 개인화기의 명중률이 교전결과에 어떤 영향을 미치는지 확인하고 이에 따른 개선비용을 추정하기 위해 연구되었다. 현재 운용 중인 국방M&S 분석용 모델은 약 30여 가지로 확인되며 이 중 개별 무기체계 효과분석에 활용되는 지상무기효과분석모델(AWAM : Army Weapon Effectiveness Analysis Model)을 활용하여 실험하였다. 우선 모델에 대한 VV&A(Verification, Validation and Accreditation) 과정을 통해 신뢰성을 확인 후에 본 실험에 임했다. 실험대상은 각개병사가 휴대하는 최소한의 전투력을 의미하는 개인화기로 실험하였다. 또한 교전결과에 가장 영향을 미치는 요소인 명중률을 집중적으로 연구하였고 이를 향상시킬수록 적에게 피해를 많이 주는 선형적인 결과가 나왔으나 지속적으로 피해율이 상승되지는 않았으며 명중률을 20% 향상시켰을 때 피해율이 가장 크다는 것을 알 수 있었다. 수치상 20%가 향상된 명중률의 교전결과가 기존보다 약 2배 이상의 피해를 준다는 것을 알 수 있었다. 또한 '명중률이 향상된 개인화기를 개발하기 위해 어느 정도의 비용을 감당해야 할 것인가?' 라는 의문을 갖고 비용추정론의 방법 중 하나인 단순회귀분석으로 그 비용을 추정해 보았다. 본 연구를 통해 국방M&S를 활용하여 개인화기의 명중률이 교전결과에 상당한 영향이 있다는 것을 확인하였고, 명중률이 개선된 개인화기가 필요하다면 이를 위한 개선비용도 추정해보는데 의의가 있었다.
본 연구는 텍스트 마이닝 기법 중 빈도분석, 워드 클라우드와 LDA 토픽 모델링 등을 사용하여, 중국 시장에서 현대자동차를 중심으로 토요타, 폭스바겐, 뷰익, 지리 등의 자동차 브랜드와 비교하며 소비자 만족와 불만족의 키워드 및 토픽을 분석하였다. 연구 대상은 2021년식-2023년식의 다섯 브랜드의 준중형 차량으로, 이 차량들에 대한 소비자 만족과 불만족 리뷰를 수집하여 분석하였다. 분석 결과, 현대자동차 아반떼는 긴 축거를 포함한 다양한 만족 요인을 보여주었다. 그러나 아반떼에 대한 불만족 요인으로는 조종, 엔진 성능, 트렁크 공간, 샤시 및 서스펜션, 안전 구성, 음향 스피커의 수량 및 브랜드, 음악 회원, 격리대, 스크린반사, CarLife 및 지도 등이 지적되었다. 이러한 문제점들을 개선하면 현대자동차의 중국 시장에서의 경쟁력이 크게 향상될 것으로 보인다. 한편, 기존 연구들은 주로 문헌 연구와 설문조사에 초점을 맞추었으나, 이 방법들은 연구자가 설정한 변수에 한정된 소비자 인식만을 밝혀내는 데 그쳤다. 본 연구는 텍스트 마이닝을 통한 다양한 자동차 브랜드 간의 비교를 통해 시장 동향과 소비자 선호에 대한 더 깊은 이해를 도모할 수 있다. 또한, 현대자동차를 포함한 다른 브랜드들이 중국 시장에서의 마케팅 전략을 개선하는 데 유용한 정보를 제공한다.
한국의 주민참여예산제도는 자치단체별로 자율적으로 운영되도록 하고 있어서, 본 연구는 이들을 몇 개의 유사한 유형들로 구분하여서 각각의 특징들을 살펴보고자 한다. 본 연구는 다양한 머신 러닝 기법들을 활용하여 2022년도 기초 시(市)를 중심으로 운영유형을 분류하였다. 그 결과, 여러 머신 러닝 기법(Neural Network, Rule Induction(CN2), KNN, Decision Tree, Random Forest, Gradient Boosting, SVM, Naïve Bayes) 중에서 SVM 기법이 성능이 가장 좋은 것으로 확인되었다. SVM 기법이 밝혀낸 운영유형은 모두 3개인데, 하나는 위원회 활동은 적게 하지만, 참여예산은 많이 확보하는 클러스터(C1)이고, 다른 하나는 주민참여예산제에 매우 소극적인 도시들의 클러스터(C3)이다. 마지막 클러스터(C2)는 참여예산에 전반적으로 적극적인데, 대다수 지역이 여기에 해당한다. 결론적으로 한국의 대다수 자치단체는 주민참여예산제를 긍정적으로 운영하고 있으며, 오직 소수의 자치단체만 소극적이다. 후속 연구로 지난 10여 년간의 시계열 자료를 분석한다면, 우리는 주민참여예산에 관한 지방자치단체 유형 분류의 신뢰도를 더욱 높일 수 있을 것으로 기대한다.
지속적인 이커머스 시장의 성장으로 풀필먼트센터가 처리해야 하는 주문량은 증가하였고, 다양한 고객 요구사항은 주문 처리의 복잡성을 높이고 있다. 이러한 추세와 함께 최근 인건비 증가로 인해 풀필먼트센터의 운영 효율성이 기업 경영 관점에서 더욱 중요해지고 있다. 본 연구는 풀필먼트센터의 출고 프로세스 중 포장 작업 영역에 적용 가능한 박스 추천을 중심으로 연구를 수행하였다. 박스 추천을 하기 위해 과거 실적 데이터를 기계학습 모형의 학습 데이터로 사용하였다. 상품 정보, 주문 정보, 포장 정보, 배송 정보 4가지 종류의 데이터를 전처리, 변수 가공 과정을 거쳐 기계학습 모델에 적용하였다. 입력 벡터로는 상품 규격 정보에 해당하는 width, length, height 3가지 특성을 사용하였으며, 상품의 실수 정보를 구간별 정수체계로 변환하는 변수 가공 과정을 통해 입력 벡터의 특성을 추출하였다. 기계학습 모형별 성능을 비교한 결과 GradientBoosting 모델을 적용하였을 경우 21개의 구간으로 상품 규격 정보를 정수로 변환하였을 때 95.2%로 가장 높은 정확도로 예측을 수행함을 확인하였다. 본 연구는 풀필먼트센터에서 잘못된 박스 선택으로 인해 발생하는 물류비용의 증가와 박스 포장 소요 시간의 비효율을 줄이기 위한 방안으로 기계학습 모형을 제시하며, 상품 규격 정보의 특성을 효과적으로 추출하기 위한 변수 가공 처리 방식을 제안한다.
최근 들어 인공지능, 컴퓨터 그래픽기술이 진화하면서 영화,광고, 방송, 게임, SNS 등 여러매체를 통해 다양한 가상휴먼이 등장하고 있다. 특히, 가상인플루언서를 중심으로 한 광고 마케팅 시장에서 가상휴먼은 시간과 비용 측면에서 기업의 중요한 홍보수단으로 이미 중요성이 입증된 상태이다. 국내는 가상 인플루언서 시장의 태동기 단계로 대기업 및 스타트업 경계없이 가상인플루언서 관련 신규 서비스를 출시 준비를 하고자 하나, 그 개발 프로세스가 공개되어 있지 않아 많은 비용을 지불해야 하는 상황이다. 이런 기업의 요구사항과 애로사항을 해결하기 위해 본 논문에서는 실사기반의 가상휴먼을 제작하기 위한 포토그래메트리기반 페이셜 캡춰 시스템을 구현하고, 이를 활용한 가상휴먼 모델링 및 활용사례에 대하여 고찰한다. 페이셜 캡처 후 실제 애니메이션이 가능한 과정까지의 복잡한 CG 작업 단계를 간소화할 수 있는 언리얼엔진기반의 메타휴먼 모델링을 통해 비용과 품질면에서 최적의 워크플로우에 대해서도 고찰하고, 또한 인스타그램 등 SNS마케팅에 활용한 사례에 대해서도 소개한다. 언리얼엔진기반의 워크플로우를 통해 기존의 CG작업과의 비교를 통해 제안한 워크플로우의 성능을 입증한다.
국방 분야에서 사이버 위협이 증대되면서 무기체계 소프트웨어의 보안이 중요해지고 있고, 현재 국내 무기체계 탑재 임베디드 소프트웨어의 대부분은 보안성이 없는 외산 실시간 운영체제(RTOS) 기반으로 동작하고 있다. 이에 따라 무기체계 임베디드 소프트웨어의 국산화와 보안 강화가 시급한 과제로 대두되고 있다. 본 연구에서는 보안 RTOS의 무기체계 적용 및 발전 방안을 제시하고자 한다. 이를 위해 국내외 RTOS 및 보안 RTOS 기술 동향을 살펴보고, 현 무기체계 임베디드 소프트웨어의 문제점을 분석하였다. 그 결과 국산화 저조, 사이버 공격 취약성, 유지보수 어려움, 비용 증가, 기술력 축적 기회 상실 등이 주요 문제점으로 도출되었다. 현존 무기체계에 적용된 임베디드 소프트웨어 현황을 조사한 결과, 기동, 화력, 방호, 지휘통제·통신, 함정, 항공 등의 분야에 임베디드 SW가 운용 중이며, 이 중 99%이상이 VxWorks 등 외산 RTOS에 의존하고 있는 것으로 파악되었다. 보안 RTOS의 핵심 기능과 무기체계 적용 가능성을 검토한 결과, 현존 및 미래 무기체계의 사격통제, 항법장치, 비행제어 등 핵심 분야에서 실시간 성과 보안성이 요구되는 영역을 중심으로 적용이 가능할 것으로 전망된다. 다만 성능과 신뢰성 확보, 검증 및 호환성 확보, 정부의 체계적 지원 등이 선결 과제로 제기되었다.
기업연상(corporate association)이 제품 평가(product responses)에 어떻게 영향을 미치는 가에 대한 연구가 부진하다는 Brown and Dacin(1997)의 문제 제기가 있은 후, 기업연상이 제품 판단에 미치는 영향과 과정에 대한 조절변수와 매개변수들을 파악하려는 연구가 진행되어 왔다. 본 연구에서는 기업연상의 두가지 유형인 CA(corporate ability) 연상과 CSR(corporate social responsibility) 연상이 성능과 재무위험에 미치는 영향력과 그 영향력을 조절하는 변수들을 조사하였다. 분석 결과에 의하면, 주효과(main effects)에 있어서는, 가설에서 기대한 바와 같이 CA 연상이 성능위험과 재무위험에 유의한 영향력을 갖는 것으로 나타난 반면, CSR 연상은 성능위험과 재무위험에 대해 유의한 영향력을 갖지 않는 것으로 나타났다. 조절변수로 인한 상호작용효과와 관련해서는, CA 연상이 성능위험과 재무위험에 미치는 주효과에 대해 제품범주 지식과 관여는 각각 유의한 조절효과를 나타내었다. 하지만, CSR 연상이 성능위험과 재무위험에 미치는 주효과에 대해서는 제품범주 지식과 관여의 조절효과는 나타나지 않았다. 이러한 연구 결과를 통하여 제품의 기능적인 속성에 대한 정보가 부족한 제품에 대해 소비자가 지각하는 위험을 감소시키기 위하여, 기업은 CSR 연상보다는 CA 연상에 대해 강조할 필요가 있다는 결론을 내리게 되었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.