Communications for Statistical Applications and Methods
/
제18권5호
/
pp.625-636
/
2011
본 논문에서는 로그정규분포의 엔트로피에 대한 모수적 추정량으로 최소분산비편향추정량과 최대가능도추정량을 제시하고 성질을 비교한다. 각 추정량의 분산을 유도해서 일치성을 밝히고 최대가능도 추정량의 편향이 추정에 미치는 영향을 분석한다. 델타근사방법을 이용해서 얻은 추정량의 분포를 제시하고 적합도 평가를 통한 유도한 분포의 확증을 위해서 모의실험을 수행한다. 평균제곱오차에 의한 상대적 효율성에 대한 조사를 통해 두 추정량의 성능을 비교한다. 모의실험의 결과에서 최소분산비편향추정량은 최대가능도 추정량보다 더 좋은 효율을 보이는 것으로 나타나며, 특히 표본크기와 분산이 동시에 작아짐에 따라 효율이 점점 높아지게 되어 월등히 나은 성능을 발휘함을 볼 수 있다.
통신 수신기 구현에 있어 채널의 특성을 파악하여 그에 적합한 수신 신호 처리를 수행하는 것은 수신 성능 향상을 위해 매우 중요하다. 무선 채널은 전력 지연 분포(power delay profile)에 따라 다양한 시간 지연 특성을 가지며, 추정된 채널의 전력 합산을 통해 시간 지연 정도를 판별 시, 채널 적응적인 수신 구조 구현이 가능하다. 본 논문에서는 전력 지연 분포의 합산을 통해 시간 지연의 상대적인 크기에 따른 채널 군으로 분류하는 경우에 있어 채널 판별 오류 확률을 closed-form 수식으로 유도하고, 다수 번의 추정 결과를 누적하여 활용 시 얻어지는 성능 이득을 제시한다.
본 연구에서는 저 레이놀즈 수 유동장에서 유연 익형의 공탄성적 거동과 공기 역학적 성능이 평가되었다. 유연 익형은 비정상 유동장에서 저 레이놀즈 수 익형으로 흔히 사용되는 CLARK-Y 익형 윗면의 일정부분에 질량이 없는 박막을 장착하여 모델링 하였다. 박막의 거동은 공기역학적 힘과 박막의 평형 방정식에 의해 지배되며 평형 방정식의 무차원화로부터 유동과 박막간의 상호작용을 나타내는 무차원 변수가 도출되며 이 무처원 변수가 박막의 거동에 큰 영향을 미친다. 박막의 분포를 익형 윗면의 지정된 지점에서부터 뒷전까지 분포시키되 지정된 박막 분포의 시작점을 변화시켜가며 각 박막 분포에서 박막의 공탄성적 거동을 지배하는 무차원 변수에 대해 공기역학적 성능의 최적화를 수행하였다. 그 결과 박막 분포의 시작점이 뒷전으로 이동할수록 무차원 변수는 거의 선형적으로 증가해야함을 알 수 있었다.
본 논문에서는 주파수 다중경로 페이딩과 Near/Gar 영향을 받는 Multi-Carrier CDMA 시스템의 성능을 분석하였다. 성능 분석을 위해 사용한 파라미터들을 Multi-Carrier의 수, 다중사용자의 수, RAKE 수신기의 가지수, 주파수 선택성 다중경로 페이딩의 감쇄지수, 그리고 CDMA 다중사용자의 분포와 세기이다. Multi-Carrier CDMA 시스템에서 Near/Far 영향을 분석하기 위하여 3가지 간섭 분포 모델을 설정하였다. 첫 번째 모델은 다중사용자가 간섭파 대 반송파 비인 I/C를 -4dB에서 4dB 사이에서 2 dB씩의 차이를 가지며 20%씩 균일하게 분포하는 경우이다. 두 번째 모델은 다중사용자가 I/C 비를-2dB에서 2dB 사이에서 2dB씩의 차이를 가지며 33.3%씩 균일하게 분포하는 경우이다. 그리고 세 번재 모델은 모든 다중사용자가 I/C가 0dB로 신호 전력과 간섭전력이 동일하게 분포하여 전력이 완전하게 제어된 경우이다. 그리고 본 논문에서는 주파수 선택성 다중경로 페이딩의 영향을 감소시키기위하여 RAKE 수신기를 채용한 Multi-Carrier CDMA 시스템을 제안하였다. 이 시스템에서는 제시한 3가지 간섭 분포 모델중에서 세 번째 모델(완전 전력제어가 된 경우)이 가장 좋은 성능을 나타내었고, 간섭파의 전력과 신호파의 전력차이가 적을수록 희망 신호에 영향을 주는 간섭 신호의 전력량이 적어서 Multi-Carrier CDMA 시스템의 성능이 향상됨을 알 수 있었다.
본 논문은 캐시 시뮬레이션을 통해 각 교체 알고리즘의 캐시 히트(Cache Hit) 및 검색시간을 측정함으로써 캐시 교체 정책에 대한 실용적인 결과를 제시한다. 프로세서의 성능이 향상되면서 캐시 메모리 또한 성능을 향상하기 위한 많은 연구가 활발히 진행되고 있다. 캐시 메모리는 일반적으로 LRU(Least Recently Used) 교체방식을 사용하고 있으며 LRU 방식 이외에도 대표적으로 FIFO(First-In First-Out), LFU(Least Frequently Used) 및 Random 교체방식이 있다. 논문에서는 캐시 메모리 구조 및 교체 알고리즘을 소프트웨어로 구현하여 각 기법의 특징을 분석한다. 논문의 실험결과 LRU 알고리즘이 균등 분포에서 36.044%, 577.936ns, 편향 분포에서 45.636%, 504.692ns의 히트율(Hit ratio)과 검색시간을 보였으며, FIFO 알고리즘은 균등 분포에서 36.078%, 554.772ns, 편향 분포에서 45.662%, 489.574ns로 LRU와 유사한 성능을 보였다. Random 교체방식은 균등 분포에서 30.042%, 622.866ns, 편향 분포에서 36.36%, 553.878%로 가장 낮은 성능을 보였다. 이는 캐시 메모리에서 일반적으로 사용되는 LRU 교체방식이 타 교체 알고리즘보다 최선의 성능을 보이면서도 데이터의 참조 정보를 고려하는 합리적인 알고리즘임을 나타내는 것이다.
알고리즘을 이용하여 금융 상품을 거래하는 알고리즘 트레이딩은 시장의 많은 요인들로 인해 그 결과가 안정적이지 못한 문제가 있다. 이 문제를 완화시키기 위해 트레이딩 알고리즘들을 조합한 앙상블 기법들이 제안되었다. 하지만 이 앙상블 방법에도 여러 문제가 존재한다. 첫째, 앙상블의 필요 요건인 앙상블에 포함된 알고리즘의 최소 성능 요건(랜덤 이상)을 만족시키도록, 트레이딩 알고리즘을 선택하지 못할 수 있다는 점이다. 둘째, 과거에 우수한 성능을 보인 앙상블 모델이 미래에도 우수한 성능을 보일 것이라는 보장이 없다는 점이다. 이 문제점들을 해결하기 위해 앙상블 모델에 포함되는 트레이딩 알고리즘들을 선택하는 방법을 다음과 같이 제안한다. 과거의 데이터를 기반으로 상위 성능의 앙상블 모델들에 포함된 트레이딩 알고리즘들의 기여도를 측정한다. 그러나 이 과거 데이터에만 기반 된 기여도들은 과거의 데이터가 충분히 많지 않고 과거 데이터의 불확실성이 반영되어 있지 않기 때문에 디리클레 분포를 사용하여 기여도 분포를 근사시키고, 기여도 분포에서 기여도 값들을 샘플하여 불확실성을 반영한다. 과거 데이터로부터 구한 트레이딩 알고리즘의 기여도 분포를 기반으로 Transformer을 훈련하여 미래의 기여도를 예측한다. 예측된 미래 기여도가 높은 트레이딩 알고리즘들을 앙상블 모델에 선택하여 포함시킨다. 실험을 통하여 제안된 앙상블 방법이 기존 앙상블 방법들과 비교하여 우수한 성능을 보임을 입증하였다.
Journal of the Korean Data and Information Science Society
/
제25권5호
/
pp.1079-1094
/
2014
상호정보 (mutual information)를 이용한 변수 선택법은 반응변수와 설명변수간의 선형적인 연관성뿐만 아니라 비선형적인 연관성을 감지하며, 설명변수 사이의 연관성도 고려하는 좋은 변수선택 방법이다. 하지만 고차원 자료에서 상호정보를 추정하기가 쉽지 않아 이에 대한 연구가 필요하다. Cai 등 (2009)은 조건부 상호정보를 이용한 전진선택법과 가지치기법을 이용하여 이러한 문제를 해결하였으며, 마이크로어레이 자료와 같은 고차원 자료에서 조건부 상호정보를 이용한 변수 선택법으로 선택된 변수들로 구성된 SVM의 분류 성능이 SVM-RFE 및 기존의 필터링 방법으로 선택된 변수들로 구성된 SVM의 분류 성능보다 뛰어남을 보였다. 하지만 조건부 상호정보를 추정할 때 사용된 Parzen window 방법은 변수의 수가 많아질수록 변수 선택 시간이 길어지는 단점으로 인해 이에 대한 보완이 필요하다. 본 논문에서는 조건부 상호정보 계산 시 필요한 설명변수의 분포를 다변량 정규분포로 가정함으로써 변수선택을 위한 계산시간을 단축시키며 동시에 변수선택의 성능을 향상시키고자 한다. 반면, 설명변수의 분포를 다변량 정규분포로 가정한다는 것은 강한 제약이 될 수 있으므로 이를 완화시킨 Edgeworth 근사를 이용한 조건부 상호정보 기반의 변수 선택법을 제안한다. 실증분석을 통해 본 논문에서 제안한 방법의 효율성을 살펴보았으며, 기존의 조건부 상호정보 기반 변수 선택법에 비해 계산 속도나 분류 성능 면에서 우수함을 보였다.
이미지 초해상도는 영상 취득 과정에서 센서와 렌즈의 물리적인 한계 등으로 인하여 의해 화질이 저하된 이미지를 더 높은 배율로 복원하는 문제이다. 이미지 초해상도는 딥러닝을 통해 놀라운 성능향상을 이루었지만, 카메라로 촬영된 실제 이미지에서는 좋은 성능을 내지 못하였다. 이는 딥러닝에서는 'bicubic' 커널로 down-sampling된 합성 이미지 데이터를 사용하였던 것과 달리 실제 이미지에서는 'bicubic' 커널을 통한 화질 저하와는 다른 화질 저하, 즉 다른 커널을 통한 화질 저하가 발생하기 때문이다. 따라서 실제 이미지에 대한 성능을 높이기 위해서는 이에 대한 정확한 커널 예측이 필요하다. 최근 주목받기 시작한 이미지 초해상도를 위한 커널 예측은 초해상도를 잘 시켜주는 커널을 직접 찾는 방법[10, 13]과 이미지의 분포와 커널을 통해 다운샘플된 이미지에 대한 분포를 일치시켜주면서 커널을 예측하는 방법[14]으로 나누어져 있다. 그러나 두 방법 모두 ill-posed problem 인 커널 예측 문제를 한 장의 이미지만으로 해결하려는 것이기 때문에 정확한 예측에는 어려움이 발생한다. 따라서 본 논문에서는 두 장의 이미지를 활용한 이미지 화질 저하 커널 예측 방법을 제안한다. 제안된 방법은 두 장의 이미지가 같은 카메라를 통해 촬영되었으며 이때 이미지 화질 저하는 카메라에 의해서만 영향을 받는다는 가정을 기반으로 한다. 즉, 두 장의 이미지는 같은 커널을 통해 저하된 이미지라는 가정을 한다. 제안된 방법은 [14]에서처럼 이미지 분포를 기반으로 한 커널 예측을 진행하며, 이미지 초해상도를 진행하고자 하는 이미지 외에 참고 이미지 또한 같은 커널에서 화질 저하를 시켰을 때 본래의 이미지와 같은 분포에 있도록 학습을 진행한다. 결과적으로 본 논문에서는 두 장의 이미지를 사용하였을 때 더욱 정확하게 커널을 찾을 수 있음을 보여준다. 두 장의 이미지를 활용하는 방식이 한 장의 이미지만을 활용하는 기존의 최고 수준의 방법에 비해 합성된 다양한 커널 데이터셋[14]에서 약 0.17dB 성능 향상이 있었다.
지금까지 제안된 분산 고차원 색인의 대부분은 균일한 분포를 가지는 데이터 집합에서 좋은 검색 성능을 나타내나, 편향되거나 클러스터를 이루는 데이터의 집합에서는 그 성능이 크게 감소된다. 본 논문은 강하게 클러스터를 이루거나 편향된 분포를 가지는 데이터 집합에 대한 분산 벡터 근사 트리의 k-최근접 검색 성능을 향상시키는 방법을 제안한다. 기본 아이디어는 전체 데이터를 클러스터링하는 상위 트리의 말단 노드가 담당하는 데이터 공간의 크기를 계산하고, 그 공간 상의 특징 벡터를 근사하는 데 사용되는 비트의 수를 달리하여 벡터 근사의 식별 능력을 보장하는 것이다. 즉, 고밀도 클러스터에는 더 많은 수의 비트를 할당하는 것이다. 우리는 합성 데이터와 실세계 데이터를 가지고 분산 hybrid spill-tree와 기존 분산 벡터 근사 트리와의 성능 비교 실험을 수행하였다. 실험 결과는 확장된 분산 벡터 근사 트리의 검색 성능이 균일하지 않은 분포의 데이터 집합에서 크게 향상되었음을 보인다.
본 논문에서는 소형 전자기기와 같은 발열부 온도 제어를 위해 압전 소자와 열전 소자를 이용하여 국소부 냉각 성능을 실험적으로 조사해 보았다. 실험은 열전 소자를 이용하여 실험 영역내에 냉각부를 형성하고, 압전 소자에 80Hz와 110Hz 의 인가주파수를 각각 적용하여, 압전 소자를 작동시켰을 때와 작동시키지 않았을 때 열전 소자에 의해 형성된 시험부의 냉각 영역에서 온도 분포를 측정하였다. 또한, 냉각 영역의 온도측정 결과를 토대로 압전 소자를 적용하였을 때와 적용하지 않았을 때 냉각 영역의 성능 계수를 계산하고, 가시화 장치를 구성한 후 시험부내에 냉각 영역의 열유동 현상도 확인해 보았다. 실험결과, 온도분포 측정 실험 결과와 성능 계수 계산 결과로 부터 압전 소자를 작동하지 않은 경우보다 압전 소자를 작동한 경우에서 냉각 성능이 개선되는 것을 확인할 수 있었다.. 또한, 가시화 결과를 토대로 열전 소자에 의해 형성된 냉각 영역에 압전 소자를 작동시켰을 경우에 냉각 영역의 국소부에 압전 소자에 의한 상하 진동의 강제 대류 현상이 발생하면서 냉각영역 전체에 고르게 분포하는 유동을 형성하고 냉각 성능이 개선되는 원인을 확인할 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.