• Title/Summary/Keyword: 성능기반 설계법

Search Result 258, Processing Time 0.027 seconds

A Suggest on the Reclassification and Performance Criteria of Construction Material in Korean Public Procurement - Based on the Law of Purchasing Policy for Market Support of Small and Medium Business - (공공공사 직접구매 조달품목 재분류 및 성능기준 제안)

  • Yang, Jinkook;Choi, Yongho;Lee, Eunha;Lee, Sangbeom
    • Korean Journal of Construction Engineering and Management
    • /
    • v.15 no.3
    • /
    • pp.31-37
    • /
    • 2014
  • "The Law of purchasing policy for market support of small and medium business" was legislated to support small and medium industry by expanding purchase and revised consistently for the activation. And then the government made the public construction direct purchase compulsory about design items designated by president on small and medium business based on this law. However, secureing quality, tardiness and field material staff's heavy duty were arisen from approximately 120 direct market purchase items. The legislative intent of law is in accord with Win-Win growth between major company and small and medium business. However material staff who works in the field based on this law has difficulties with material securing quality, JIT(Just In Time), cost push. This study reclassified procurement items of "the direct market purchase system" reasonably and then suggested performance criteria for evaluation. The suggested result will contribute to vatalize the direct market purchase system.

Technology Trends on Structural Analysis Software in Aerospace Industry (항공우주산업 구조해석 소프트웨어 기술동향)

  • Lim, Jae-Hyuk;Kim, Kyung-Won;Kim, Sun-Won;Hwang, Do-Soon
    • Current Industrial and Technological Trends in Aerospace
    • /
    • v.7 no.2
    • /
    • pp.59-67
    • /
    • 2009
  • Computer Aided Engineering(CAE) technology as well as Design(CAD) and Manufacturing(CAM) have been widely adopted in the aerospace industry in order to develop the structure of airplanes, satellites and launch vehicles. Among them, CAE softwares based on finite element methods such as NASTRAN, ABAQUS and ANSYS have gained many engineers' interest in various industries such as automobiles, civils, aircraft and spacecraft. The softwares usually consist of several modules: Static, Dynamic, Vibration, Impact etc. that make analysis specific to meet the design goals of the structure systems. Recent enhancement in the computer hardwares and numerical algorithms enables us to perform complex analysis like multi-physics, optimum design. Also, they make it possible to deal with a large scale problem easily. This paper reviews structural analysis softwares in aerospace industry and gives a summary on its recent development.

  • PDF

Optimization of Design Parameters for Steel Grating Using Taguchi Method Considering Rigidity and Drainage Efficiency (다구찌기법 기반의 강성과 배수능력 관계를 고려한 스틸그레이팅의 설계변수 최적화)

  • Kim, Woo-Tae;Lee, Se-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.8
    • /
    • pp.905-910
    • /
    • 2014
  • The steel grating discussed in this study is a drain cover that enhances the rigidity of the steel frame using an inclined inflow tract for wastewater, facilitates smooth drainage, and prevents the escape of bad smell from the drain. Recently, the urban problem of bad smell in sewerage lines has been hindering the improvement of living standards. Moreover, the frequent failure of existing products deters bad smell prevention measures and results in administrative power and budget wastage. The pressure to reduce budgets propels the increased demand for functional steel grating. Thus, this study focused on optimizing the design parameters of a steel grating by simultaneously considering its rigidity and drainage efficiency.

Actuator Mixer Design in Rotary-Wing Mode Based on Convex Optimization Technique for Electric VTOL UAV (컨벡스 최적화 기법 기반 전기추진 수직이착륙 무인기의 추진 시스템 고장 대처를 위한 회전익 모드 믹서 설계)

  • Jung, Yeondeuk;Choi, Hyungsik
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.9
    • /
    • pp.691-701
    • /
    • 2020
  • An actuator mixer design using convex optimization technique situation where the propulsion system of an electric VTOL UAV during vertical take-off and landing maneuvers is proposed. The attainable control set to analyze the impact from failure of each motor and propeller can be calculated and illustrated using the properties of the convex function. The control allocation can be defined as a convex function optimization problem to obtain an optimal solution in real time. The mixer is implemented using a convex optimization solver, and the performance of the control allocation methods is compared to the attainable control set. Finally, the proposed mixer is compared with other techniques with nonlinear sux degree-of-freedom simulation.

Stiffness Analysis of Spring Mechanism for Semi-Automatic Gripper Motion of Tendon-Driven Remote Manipulator (와이어 구동방식 원격조작기용 그리퍼의 반자동 파지 및 해제 동작을 위한 스프링 강성 분석)

  • Yu, Seung-Nam;Lee, Jong-Kwang
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.11
    • /
    • pp.1405-1411
    • /
    • 2012
  • Remote handling manipulators are widely used for performing hazardous tasks, and it is essential to ensure the reliable performance of such systems. Toward this end, tendon-driven mechanisms are adopted in such systems to reduce the weight of the distal parts of the manipulator while maintaining the handling performance. In this study, several approaches for the design of a gripper system for a tendon-driven remote handling system are introduced. Basically, this gripper has an underactuated spring mechanism that is combined with a slave manipulator triggered by a master operator. Based on the requirements under the specified tendon-driven mechanism, the connecting position of the spring system on the gripper mechanism and kinematic influence coefficient (KIC) analysis are performed. As a result, a suitable combination of components for the proper design of the target system is presented and verified.

Empirical Characterization of an Air-cored Induction Coil Sensor using Constructional Parameters (Air-cored induction 코일 센서의 실험 기반 고주파 특성 모델링에 대한 연구)

  • Lim, Han-Sang;Kim, In-Joo
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.47 no.2
    • /
    • pp.1-7
    • /
    • 2010
  • This paper presents empirical equations indicating the high frequency performance characteristics of air-cored induction coil sensors with their constructional parameters. An air-cored induction coil sensor is widely used due to good linearity at low frequency ranges but the sensor has weakness of relatively low sensitivity to the magnetic field. At high frequency ranges, the sensitivity can be dramatically increased, largely depending on the frequency of the injected field, and this property can be a great asset to some electromagnetic inspections, since they utilize the interrogating current with a fixed frequency. The application of this property of the coil sensor requires the estimation of its high frequency performance. We made experiments on the frequency responses of the coil sensors under diverse constructional conditions and, on the basis of the experimental results, the high frequency performance, such as the resonant frequency and the sensitivity at the frequency, was estimated, as a function of the constructional parameters of the coil sensor. The good agreements between experimental and estimated data were reported.

A numerical study on the optimum spacing of disc cutters considering rock strength and penetration depth using discrete element method (암반강도 및 압입깊이에 따른 디스크커터의 최적간격 산정을 위한 개별요소법 기반 수치해석 연구)

  • Lee, Sang Yun;Song, Ki-il;Jung, Ju Hwan
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.22 no.4
    • /
    • pp.383-399
    • /
    • 2020
  • Optimizing the spacing of the disc cutter is a key element in the design of the TBM cutter head, which determines the drilling performance of the TBM. The full-scale linear cutting test is known as the most reliable and accurate test for calculating the spacing of the disc cutter, but it has the disadvantage of costly and time-consuming for the full-scale experiment. In this study, through the numerical analysis study based on the discrete element method, the tendency between Specific Energy-S/P ratio according to uniaxial compression strength and penetration depth of rock was analyzed, and the optimum spacing of 17-inch disc cutter was derived. To examine the appropriateness of the numerical analysis model, the rolling force acting on the disc cutter was compared and reviewed with the CSM model. As a result of numerical analysis for the linear cutting test, the rolling force acting on the disc cutter was analyzed to be similar to the rolling force derived from the theoretical formula of the CSM model. From the numerical analysis on 5 UCS cases (50 MPa, 70 MPa, 100 MPa, 150 MPa, 200 MPa), it is found that the range of the optimum spacing of the disc cutter decreases as the rock strength increases. And it can be concluded that 80~100 mm of disc cutter spacing is the optimum range having minimum specific energy regardless of rock strength. This tends to coincide with the optimal spacing of previously reported disk cutters, which underpins the disk cutter spacing calculated through this study.

Convolutional Neural Network-based Prediction of Bolt Clamping Force in Initial Bolt Loosening State Using Frequency Response Similarity (초기 볼트풀림 상태의 볼트 체결력 예측을 위한 주파수응답 유사성 기반의 합성곱 신경망)

  • Jea Hyun Lee;Jeong Sam Han
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.4
    • /
    • pp.221-232
    • /
    • 2023
  • This paper presents a novel convolutional neural network (CNN)-based approach for predicting bolt clamping force in the early bolt loosening state of bolted structures. The approach entails tightening eight bolts with different clamping forces and generating frequency responses, which are then used to create a similarity map. This map quantifies the magnitude and shape similarity between the frequency responses and the initial model in a fully fastened state. Krylov subspace-based model order reduction is employed to efficiently handle the large amount of frequency response data. The CNN model incorporates a regression output layer to predict the clamping forces of the bolts. Its performance is evaluated by training the network by using various amounts of training data and convolutional layers. The input data for the model are derived from the magnitude and shape similarity map obtained from the frequency responses. The results demonstrate the diagnostic potential and effectiveness of the proposed approach in detecting early bolt loosening. Accurate bolt clamping force predictions in the early loosening state can thus be achieved by utilizing the frequency response data and CNN model. The findings afford valuable insights into the application of CNNs for assessing the integrity of bolted structures.

Modeling and Digital Predistortion Design of RF Power Amplifier Using Extended Memory Polynomial (확장된 메모리 다항식 모델을 이용한 전력 증폭기 모델링 및 디지털 사전 왜곡기 설계)

  • Lee, Young-Sup;Ku, Hyun-Chul;Kim, Jeong-Hwi;Ryoo, Kyoo-Tae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.11
    • /
    • pp.1254-1264
    • /
    • 2008
  • This paper suggests an extended memory polynomial model that improves accuracy in modeling memory effects of RF power amplifiers(PAs), and verifies effectiveness of the suggested method. The extended memory polynomial model includes cross-terms that are products of input terms that have different delay values to improve the limited accuracy of basic memory polynomial model that includes the diagonal terms of Volterra kernels. The complexity of the memoryless model, memory polynomial model, and the suggested model are compared. The extended memory polynomial model is represented with a matrix equation, and the Volterra kernels are extracted using least square method. In addition, the structure of digital predistorter and digital signal processing(DSP) algorithm based on the suggested model and indirect learning method are proposed to implement a digital predistortion linearization. To verify the suggested model, the predicted output of the model is compared with the measured output for a 10W GaN HEMT RF PA and 30 W LDMOS RF PA using 2.3 GHz WiBro input signal, and adjacent-channel power ratio(ACPR) performance with the proposed digital predistortion is measured. The proposed model increases model accuracy for the PAs, and improves the linearization performance by reducing ACPR.

Field Phenotyping of Plant Height in Kenaf (Hibiscus cannabinus L.) using UAV Imagery (드론 영상을 이용한 케나프(Hibiscus cannabinus L.) 작물 높이의 노지 표현형 분석)

  • Gyujin Jang;Jaeyoung Kim;Dongwook Kim;Yong Suk Chung;Hak-Jin Kim
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.67 no.4
    • /
    • pp.274-284
    • /
    • 2022
  • To use kenaf (Hibiscus cannabinus L.) as a fiber and livestock feed, a high-yielding variety needs to be identified. For this, accurate phenotyping of plant height is required for this breeding purpose due to the strong relationship between plant height and yield. Plant height can be estimated using RGB images from unmanned aerial vehicles (UAV-RGB) and photogrammetry based on Structure from Motion (SfM) algorithms. In kenaf, accurate measurement of height is limited because kenaf stems have high flexibility and its height is easily affected by wind, growing up to 3 ~ 4 m. Therefore, we aimed to identify a method suitable for the accurate estimation of plant height of kenaf and investigate the feasibility of using the UAV-RGB-derived plant height map. Height estimation derived from UAV-RGB was improved using multi-point calibration against the five different wooden structures with known heights (30, 60, 90, 120, and 150 cm). Using the proposed method, we analyzed the variation in temporal height of 23 kenaf cultivars. Our results demontrated that the actual and estimated heights were reliably comparable with the coefficient of determination (R2) of 0.80 and a slope of 0.94. This method enabled the effective identification of cultivars with significantly different heights at each growth stages.