• Title/Summary/Keyword: 섭입

Search Result 84, Processing Time 0.022 seconds

CHIME Zircon Age of the Gamaksan Alkaline Meta-Granitoid in the Northwestern Margin of the Gyeonggi Massif, Korea, and its Tectonic Implications (경기육괴 북서 연변부 감악산 알칼리 변성화강질암의 CHIME 저어콘 연대와 지체구조적 의의)

  • Cho, Deung-Lyong;Lee, Seung-Ryeol;Suzuki, Kazuhiro
    • The Journal of the Petrological Society of Korea
    • /
    • v.16 no.3
    • /
    • pp.180-188
    • /
    • 2007
  • We carried on CHIME zircon age dating for the Gamaksan alkaline meta-granitoid (GAM) from the northwestern margin of the Gyeonggi massif, and obtained a timing of regional metamorphism at $247{\pm}14Ma$ (n=103, MSWD=0.92). The age is compatible with Permo-Triassic regional metamorphic ages from the Imjingang Belt which has been regarded as possible eastward extension of Triassic collisional belt in China. Considering an extensional ductile shearing of the Gyeonggi (Kyonggi) Shear Zone which deformed GAM occurred at 226 Ma with temperature condition about $500^{\circ}C$ (Kim et al., 2000), and the Late Triassic to Early Jurassic Daedong Group unconformably overlies on top of the ductile shear zone, cooling rate of GAM over the period can be estimated as $18{\sim}10^{\circ}C/Ma$. Since new zircon begin to pow at temperature higher than upper-amphibolite facies condition (${\sim}700^{\circ}C$), cooling rate of GAM from peak metamorphism (247 Ma) to deposition of the Daedong G.oup (${\sim}$Early Jurassic) would be higher than $10^{\circ}C/Ma$. Such rapid cooling rate is compatible with that reported from exhumation stage of the Dabie-Sulu Belt, and supports an idea that the Gyeonngi massif is a part of Permo-Triassic orogenic belt in East Asia.

Petrology on the Late Miocene Basalts in Goseong-gun, Gangwon Province (강원도 고성군 일대의 후기 마이오세 현무암의 암석학적 연구)

  • Koh Jeong Seon;Yun Sung-Hyo
    • Journal of the Korean earth science society
    • /
    • v.26 no.1
    • /
    • pp.78-92
    • /
    • 2005
  • Petrographical and petrochemical analyses for late Miocene basalts in Goseong-gun area. Gangwon province, were carried out to interpret the characteristics and the origin of magma. The basaltic rocks occurred as plug-dome in the summit of several small mountain and developed columnar jointing with pyroxene-megacryst bearing porphyritic texture. And the basalt contains xenoliths of biotite granite (basement rocks), gabbro (lower crustal origin) and Iherzolite(upper mantle origin). The basalts belong to the alkaline basalt field in TAS diagram and partly belong to picrobasalt and trachybasalt field. On the tectonomagmatic discrimination diagram f3r basalt in the Goseong-gun area. they fall into the fields for the within plate and oceanic island basalt. The characteristics of trace elements and REEs shows that primary magma for the basalt magma would have been derived from partial melting of garnet-peridotite mantle. This late Miocene basalt volcanism is related to the hot spot within the palte.

A Study on Noise Characteristic of Multi-channel Seismic Data for the Hydrothermal Deposit Survey at Lau Basin, South Pacific (열수광상 탐사를 위한 남태평양 라우분지 다중채널 탄성파 자료의 잡음특성 연구)

  • Ok, Soo-Jong;Ha, Young-Soo;Lee, Jin-Woo;Shin, Sung-Ryul
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2011.06a
    • /
    • pp.235-235
    • /
    • 2011
  • Lau basin of south Pacific, as an active back arc basin, is promising area bearing seafloor massive hydrothermal deposit that is located in a subduction zone between the Pacific ocean plate and Indo-Australian continental plate. Korea Ocean Research and Development Institute tracked from 2004 to 2006 the hydrothermal activity to the extension of the northeast Lau Basin, targeting seamount. hydrothermal activity by tracking was found hydrothermal evidences. In this study, Marine seismic survey was carried out in the Lau basin seamount of the possibility of hydrothermal deposit. In particular, Marine magnetic survey and seismic survey was carried out at the same time in TA-12 seamount and noise characteristics were found in the seamount. the main process of data processing is Bandpass filter, FK filter, Deconvolution for noise attenuation such backscatter and multiple reflections. the migration is performed to compensate for reflection points followed by seamount of a slope. In this study, bedrock and upper strata could be identified and in the Future, the comparative method with Multi Beam Echo Sounder(MBES) are likely to derive the correct velocity model, the marine magnetic survey results should be considered.

  • PDF

Seismic Structures of the Continental Margin around Smith Island, antarctic Peninsula (남극반도 스미스섬 부근 대륙주변부의 탄성파 구조)

  • Jin, Yong-Keun;Nam, Sang-Heon;Lee, Joo-Han;Hong, Jong-Kuk;Lee, Duk-Kee;Lee, Jong-Ik
    • Journal of the Korean Geophysical Society
    • /
    • v.9 no.4
    • /
    • pp.443-453
    • /
    • 2006
  • Using seismic profiles obtained in the Antarctic Peninsula continental margin around Smith Island located at the southwestern end of the South Shetland Islands, we investigated sediments distribution, sedimentation, continental shelf formation, and tectonic evolution history. The study area is a very unique area that has two tectonic provinces with a tectonic boundary near Smith Island just the landward projection of the Hero Fracture Zone (HFZ). To the southwest of the Island, the margin became inactive margin after the collision of the ridge crest of the Antarctic-Phoenix ridge and trench, whereas to the northeast the margin is still apparently active margin with the spreading center and trench morphology in the sea. Generally the northeastern margin has the shelf sedimentary basins wth thick sedimentary layers, well-developed forearc basin, broad continental slope and distinct trench morphology, and the southwestern margin is characterized by steep and narrow continental slope and localized shelf basins. the mid-shelf basement high structures are distinct in the southwestern margin, which are thought to be formed by thermal effect caused by the subducted spreading centers. The high is observed in the area just northeast of the Island, implying that the tectonic boundary along the landward projection of the HFZ is not sharply defined.

  • PDF

Petrlolgy of the Cretaceous Volcanic Rocks in Cheonsungsan Area, Korea. (천성산 백악기 화산암류의 암석학적 연구(1))

  • 김진섭;선종규
    • The Journal of the Petrological Society of Korea
    • /
    • v.5 no.1
    • /
    • pp.108-120
    • /
    • 1996
  • This study reports petrography and geochemical characteristics of the Cretaceous volcanic rocks that are distributed in the vicinity of the Cheonsungsan area, Yangsan-Gun, Gyeongsangnam-Do. The Cretaceous volcanic rocks composed of andesitic rocks, Wonhyosan tuff, Cheonsungsan tuff in ascending order. Sedimentary rock is the basement in the study area cofered with volcanic rocks. These volcanic rocks are Wonhyosan tuff and Cheonsungsan tuff that represented the early phase of the Bulgugsa igneous activity. Wonhyosan tuff are classified into dacite tuff and dacite welded tuff based on the rock texture and their mineral composition. They are covered with Cheonsungsan tuff. Dacite tuff composed of lithic lapilli ash-flow tuff and vitric ash-flow tuff. Most dacite welded tuff are lapilli ash-flow tuff. Cheonsungsan tuff overlying the Wonhyosan tuff consists of rhyolite tuff and rhyolite welded tuff. Rhyolite tuff are lithic crystal ash-flow tuff and crystal vitric ash-flow tuff with somewhat accidental fragments of andesitic and sedimentary rocks. Rhyolite welded tuff is distinguishe from rhyolite tuff by is typical eelded fabrics and its rock color. According to petrochemical data, the volcanic rocks in study area belong to high-K orogenic suties. On the discriminant diagrams such as La/Yb versus Th/Yb, these rocks falls into the discriminant fields for the normal continental margin arc.

  • PDF

Occurrence and petrochemistry of the granites in the Pocheon-Euijeongbu area (포천-의정부 일대에 분포하는 화강암류의 산상과 암석화학)

  • 윤현수
    • The Journal of the Petrological Society of Korea
    • /
    • v.4 no.2
    • /
    • pp.91-103
    • /
    • 1995
  • The study area is located at the middle part of Daebo granitic batholith in the Gyeonggi massif. The geology of the area is mostly composed of Precambrian gneiss complex, coarse- grained middle Jurassic and fine-grained early Cretaceous biotite granites, and Cretaceous small stocks and dykes. The gneiss complex consists mainly of banded gneiss, granitc gneiss, some schist and quartzite. The coarse-grained granite can be divided into greyish granite(Gg1 in the margin and slightly pinkish granite(Gp) in the center. The former is hornblende biotite granite characterized by basic clot and xenolith. The latter is generally garnet biotite granite containing only poor basic clot. The fine-grained granite intruded the coarse-grained granite. The K/Ar biotite ages from the granites belong to middle Jurassic and early Cretaceous. The K/Ar biotite ages and geochemical compositions indicate that Gg and Gp were differenciated from a single magmatic body. The granites are calc-alkali and metaluminous-peraluminous. They are S-type(i1menite series) and partly I-type granitedmagnetite series) formed by melting of relatively fixed source composition. Their tectonic settings belong to the compressional suits and VAG of continental margin.

  • PDF

Geochemistry of Precambrian Mafic Dikes in Northern Michigan, U.S.A.: Implications for the Paleo-Tectonic Environment (북부 미시간 지역에 분포하는 선캠브리아기의 염기성 암맥에 대한 지화학적인 연구)

  • Wee, Soo Meen
    • Economic and Environmental Geology
    • /
    • v.24 no.4
    • /
    • pp.447-463
    • /
    • 1991
  • Petrological and chemical studies of Precambrian dikes in the southern Lake Superior region were conducted with the objects of evaluating magma source and constraining models for the paleo-tectonic environment. Forty-six samples were analyzed for major, trace, and rare earth elements. Chemical data of the studied dikes are typical of continental tholeiites and showing iron-enrichment fractionation trend. With wallrock contamination carefully evaluated, a series of tectonic discriminating methods utilizing immobile trace elements indicate that the source magma was a high-Ti tholeiitic basalt similar to present-day T-type MORB. Effect of chemical contamination from wallrock assimilation accmulates with increasing differentiation. Evolved rocks show LREE enriched patterns and have enhanced levels of LIL elements (e.g., Rb, K, Ba, Th), but low levels of high field strength elements (e.g., Nb, P, Ti) with respect to their neighboring elements. It is suggested from this study that this enrichment possibly due to a combination of a feature inherited from the subcontinental lithosphere and crustal contamination. Geochemical signatures of these rocks are distinctively different from those of arc-related volcanics. Comparisons with chemistries of modern magmas show a pattern of overlap between Within-plate and ocean-floor characteristics, and chemical signatures of these rocks favor a model of intrusion into a crustal environment undergoing lithospheric attenuation.

  • PDF

SHRIMP U-Pb Age of the Early Jurassic Deformed Granites in the Aneui Quadrangle, SW Yeongnam Massif (영남육괴 남서부 안의도폭 지역 초기 쥬라기 변형 화강암류의 SHRIMP U-Pb 연대)

  • Seo, Jaehyeon;Song, Yong-Sun;Park, Kye-Hun
    • Economic and Environmental Geology
    • /
    • v.49 no.2
    • /
    • pp.147-153
    • /
    • 2016
  • SHRIMP U-Pb age determination was carried out for deformed granites in the Aneui quadrangle, SW Yeongnam Massif. Dating of zircons from a highly deformed mylonitic granite with banded structure and a relatively less deformed porphyritic to augenic granites, that were known as Precambrian gneisses, yielded the same age of ca. 195 Ma. On the basis of this result and previous age data, Early to Middle Mesozoic igneous activity around the Aneui area was interpreted as follows; Subduction-related granitic magmatism started with the intrusion of the Hamyang Granite in the middle Triassic (ca. 225-219 Ma) mainly in the west of the area and ended with syenitic intrusion at the end of Triassic period (ca, 220-210 Ma). After a relatively short period of quiescency, granitic magmatism restarted with the intrusion of magma forming deformed granites dated in this study at the Early Jurassic of ca. 195 Ma and continued to ca. 189 Ma and dioritic intrusion was associated around the late stage of granitic magmatism.

$\acute{E}$tude du Processus de Morphogen$\grave{e}$se de l'$\hat{I}$le Rocheuse de Baek dans la Ville de Yeosu en Cor$\acute{e}$edu Sud (여수시 백도의 지형형성과정에 대한 고찰)

  • Lee, Jeong Hun
    • Journal of the Korean association of regional geographers
    • /
    • v.19 no.4
    • /
    • pp.627-640
    • /
    • 2013
  • Cette $\acute{e}$tude a pour objet d'analyser le processus de morphogen$\grave{e}$se de l'$\hat{I}$le rocheuse de Baek. Nous y voyons une cl$\acute{e}$ pour apprendre son relief marin et le processus de morphogen$\grave{e}$se des l'$\hat{I}$les m$\acute{e}$ridionales de Cor$\acute{e}$e du Sud. Le granit porphorique qui compose l'$\hat{I}$le rocheuse de Baek est une roche magmatique qui s'est form$\acute{e}$e il y a 60 million d'ann$\acute{e}$es. La cause principale de formation de l'$\hat{I}$le rocheuse de Baek, est une ligne de d$\acute{e}$lit vers le NE-SO et l'ENE-OSO, un soul$\grave{e}$vement de la plaque tectonique et une $\acute{e}$rosion par les vagues. L'$\hat{I}$le rocheuse de Baek pr$\acute{e}$sente un caract$\grave{e}$re d'$\acute{e}$ruption de magma de calc-alcalin par analyse g$\acute{e}$ochimique de son granit porphorique et fait partie du granit de l'arc volcanique. Il s'agit d'un magma qui s'est form$\acute{e}$ dans la subduction pr$\grave{e}$s du continent. Il est aussi n$\acute{e}$ssaire d'examiner un soul$\grave{e}$vement qui est plus $\acute{e}$lev$\acute{e}$ qu' un mouvement ascendant de la surface de la mer $\grave{a}$ l'$\grave{e}$re quaternaire environ de l'$\hat{I}$le rocheuse de Baek malgr$\acute{e}$ que, selon nous, nous y trouvions une faille et une terrasse marine.

  • PDF

Re-evaluation of Genetic Environments of Zinc-lead Deposits to Predict Hidden Skarn Orebody (스카른 잠두 광체 예측을 위한 아연-연 광상 성인의 재검토)

  • Choi, Seon-Gyu;Choi, Bu-Kap;Ahn, Yong-Hwan;Kim, Tae-Hyeong
    • Economic and Environmental Geology
    • /
    • v.42 no.4
    • /
    • pp.301-314
    • /
    • 2009
  • The Taebaeksan mineralized province, which is the most important one in South Korea, is rich in zinc-lead-tungsten-iron-copper-molybdenum-silver-gold mineral resources and has a diversity of deposit styles. These deposits principally coexist in time and space with porphyry-related epigenetic deposit such as skarn, hydrothermal replacement, mesothermal vein, and Carlin-like deposits. The magmatic-hydrothermal systems in the Taebaek fold belt is genetically characterized by the Bulguksa subvolcanic rocks(ca. $110{\sim}50\;Ma$) related to northwestward subduction of the paleo-Pacific Plate. The most important zinc-lead deposits in the area are the Uljin, Yeonhwa II and Shinyemi skarn, the Janggun hydrothermal replacement, and the Yeonhwa I intermediate-mixed (skarn/hydrothermal replacement) ones. In the present study, we present a compilation of metal production and mineral assemblage of the zinc-lead deposits. The metal difference of deposit styles in the area indicates a cooling path from intermediate-sulfidation to low-sulfidation state in the polymetallic hydrothermal system, reflecting spatial proximity to a magmatic source.