• Title/Summary/Keyword: 섬진강유역

Search Result 213, Processing Time 0.023 seconds

Changes in Environmental Factors and Primary Productivity in the Seomjin River Estuary (섬진강 하구역에서 환경요인 및 기초생산성의 변화)

  • YANG SUNG RYULL;SONG HWAN SEOK;KIM KWAN-CHUN;PARK CHUL;MOON CHANGHO
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.10 no.3
    • /
    • pp.164-170
    • /
    • 2005
  • To investigate the aquatic environmental factors and processes controlling primary production in the Seomjin River estuary, chlorophyll a, nutrients, pH, SS, DO, temperature, salinity and primary productivity were measured in February, April, August and October, 2001. Primary productivity values ranged between 50.7 and 14,120.3 mg C $m^{-3} day^{-1}$ during the sampling period. In contrast to other estuaries, light condition did not seem to be the important limiting factor far primary production due to high water-column transparency during most of the time. The autumn bloom occurred in regions where salinity values ranged between 10 and 20 psu. This phenomenon appeared to develop every year and deserves further investigation. The behavior of nutrients, which is one of the major factors controlling the primary productivity, appeared to be governed by salinity regimes. The main source of nitrogenous nutrients seemed to be the freshwater runoff from the Seomjin River. However, that of phosphorus seemed to be from the industrial wastewater in Gwangyang area. The primary pro-duction of phytoplankton in the study area varied with space and time, showing a close correlation with water column transparency, and exhibited higher values compared to those of adjacent coastal regions in Gwangyang Bay.

Estimates of Regional Flood Frequency in Korea (우리나라의 빈도홍수량의 추정)

  • Kim, Nam-Won;Won, Yoo-Seung
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.12
    • /
    • pp.1019-1032
    • /
    • 2004
  • Flood frequency estimate is an essential index for determining the scale of small and middle hydraulic structure. However, this flood quantity could not be estimated directly for practical design purpose due to the lack of available flood data, and indirect method like design rainfall-runoff method have been used for the estimation of design flood. To give the good explain for design flood estimates, regional flood frequency analysis was performed by flood index method in this study. First, annual maximum series were constructed by using the collected data which covers from Japanese imperialism period to 1999. Wakeby distribution recommended by WMO(1989) was used for regional flood frequency analysis and L-moment method by Hosking (1990) was used for parameter estimation. For the homogeneity of region, the discordance and heterogeneity test by Hosking and Wallis(1993) was carried for 4 major watersheds in Korea. Physical independent variable correlated with index flood was watershed area. The relationship between specific discharge and watershed area showed a type of power function, i.e. the specific discharge decreases as watershed area increases. So flood quantity according to watershed area and return period was presented for each watershed(Han rivet, Nakdong river, Geum river and Youngsan/Seomjin river) by using this relation type. This result was also compared with the result of point frequency analysis and its regionalization. It was shown that the dam construction couldn't largely affect the variation of peak flood. The property of this study was also examined by comparison with previous studies.

Analysis of Scenarios for Environmental Instream Flow Considering Water Quality in Saemangeum Watershed (새만금유역의 수질을 고려한 환경유지용수의 시나리오 분석)

  • Kim, Se-Min;Park, Young-Ki;Won, Chan-Hee;Kim, Min-Hwan
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.3
    • /
    • pp.117-127
    • /
    • 2016
  • In this study, analyzed scenarios of the environmental instream flow for water quality improvement in Saemangeum watershed. In order to get an environmental instream flow, Methodology is selected for Retention-Basin, reservoir expansion, new dam construction, Modification of water intake and drainage system, Rearrangement of plan for system which Yongdam and Seomjin river dam have been used water supply. The study composed of diverse scenario of Environmental instream flow increasement and analyzed the effect of improving the water quality by the QUAL2K model and calculation of runoff for saemangeum watershed by SWAT model. The following water quality indicators have been simulated in irrigation and non-irrigation period for BOD and T-P. When scenarios applied to water quality model, Improvement rate in the water quality for Total Maximum Daily loads of Mankyung B unit watershed during irrigation and non-irrigation period is BOD (28.70%), T-P (17.09%) and BOD (28.51%), T-P (28.68%) respectively. Dongjin A unit watershed during irrigation and non-irrigation period is BOD (14.39%), T-P (14.59%) and BOD (15.54%), T-P (19.46%) similary. Simulation results is to quantify the constribution of the improvement in the water quality. In particular, It was demonstrative that improving effect for water quality was evaluated to be great in non-irrigation period.

Study on the investigation of river disturbance in Korea (하천교란의 실태조사 연구)

  • Jang, Chang-Lae;Kim, Joon-Tae;Lee, Kwang-Man
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.946-950
    • /
    • 2007
  • 본 연구에서는 우리나라 하천의 교란에 영향을 미치는 인위적인 교란의 원인이 되는 하천정비현황, 수리구조물의 설치, 댐의 건설현황, 골재채취 현황 등에 대하여 실태조사를 하여 분석하였다. 국가하천은 하천연장 $3,260.75km^2$, 개수율 94.81%이며, 지방1급 하천은 하천연장 $1,178.87km^2$, 개수율 95.76%이다. 또한 지방2급 하천은 하천연장 $25,795.85km^2$, 개수율 57.31%로 나타내었다. 국내 보의 현황은 전국적으로 14,364개소가 하천에 설치되어 있으며, 2.1km마다 1개의 보가 설치되어 있다. 시도별로 강원도가 가장 많은 3,463개소로 1.1km마다 보가 설치되어 있으며 다음으로 충북(1.2km/보), 전남(1.9km/보) 순으로 나타났다. 국내의 댐은 약 18,000개소로서 대댐 기준인 댐 높이 15m 이상, 저수량 300만 $m^3$ 이상의 댐은 1,215개소이며, 다목적댐 15개소, 발전댐 21개소, 홍수조절용댐이 1개소가 축조되어 있으며, 댐의 개소수로는 농업용댐이 가장 많이 건설되었다. 유역별로는 낙동강 수계가 가장 많이 건설되었으며, 한강, 금강 수계 순이다. 또한 다목적댐은 낙동강유역에 많이 건설되어 있으며 발전용댐은 한강유역에 가장 많이 건설되었다. 수계별 다목적댐과 발전용댐이 유역에 차지하는 비율로는 한강수계가 83%로 가장 많이 차지하고 있으며, 섬진강, 금강, 낙동강 순이었다. 행정구역별 골재채취 허가량은 경북, 경남, 대구, 부산 순으로 많으며, 특히 낙동강 유역에서 지속적으로 많은 양의 골재채취가 이루어져 왔다. 그 다음으로 금강 수계, 특히 충남에서 많은 골재채취가 이루어졌다. 연도별 골재채취 허가량은 1997년 이후로 지속적으로 감소되고 있다.게 될 것이다. 본 연구에서는 현재 진행중인 승기천 오염하천 정화사업이 종료되는 시점을 기준으로 남동유수지에 대해 승기천과 연계한 유수지의 환경개선 방법을 제안하였다. 준설을 통해 유수지의 근본적인 오염원을 제거하고 남동유수지 유입부에 인공습지와 수처리설비를 설치하여 유수지의 수질을 개선하고 개선된 수질이 3급수로 유지하도록 하였으며, 설치된 인공습지에는 철새도래지를 조성하여 유수지 유입수인 철새가 날아드는 하천인 승기천의 테마와 연계하도록 하였다. 인공습지 주변으로 식생호안을 설치하고 유수지 주변에는 산책로를 설치하여 지역주민들의 친환경 수변공간으로 활용하도록 하였다. 1유수지와 연결된 2유수지는 BTL사업을 통해 주변공단으로부터의 오폐수를 원천적으로 차단하도록 하였으며 2유수지를 매립하여 지하는 강우시 유출수 저류가 가능한 화물차주차장으로 활용하고 지상은 녹지공간으로 조성하여 공단근로자 및 지역주민을 위한 휴식공간으로 활용될 수 있도록 제안하였다. 본 연구는 남동유수지 환경 개선 사업 실행을 위한 정책 연구로 연구결과를 인천시가 적극 수용하기로 결정함에 따라 인천시의 환경 현안 문제인 남동유수지의 수질개선을 통해 시민의 휴식 및 여가선용 공간으로 활용하기 위한 사업의 기초자료로 활용되며 이미 설계검토가 시작되었다. 본 연구결과는 유수지 및 저수지의 환경개선 사업의 선두적인 성공사례로 국내 타 지역의 유사한 사업에 있어 벤치마킹을 할 수 있는 훌륭한 사례가 될 것이다.요 생산이 증가하자 군신의 변별(辨別)과 사치를 이유로 강력하게 규제하여 백자의 확대와 발전에 걸림돌이 되었다. 둘째, 동기(銅器)의 대체품으로 자기를 만들어 충당해야할 강제성 당위성 상실로 인한 자기수요 감소를 초래하였을 것으로 사료된다. 셋째, 경기도 광주에서 백자관요가 운영되었으므로 지방인 상주지역에도 더 이상 백자를 조달받을 필요가 없이,

  • PDF

Assessment of sediment and total phosphorous loads using SWAT in Oenam watershed, Hwasun, Jeollanam-do (SWAT 모델을 이용한 외남천 유역의 토사 및 총인 유출량 분석)

  • Lee, Taesoo
    • Journal of the Korean association of regional geographers
    • /
    • v.22 no.1
    • /
    • pp.240-250
    • /
    • 2016
  • Monitoring for water quantity and quality was conducted in this study for 2 years (2012~2013) in Oenam Stream which is a tributary of Seomjin River and upstream of Juam Lake. Suspended solid and total phosphorous(TP) were monitored and analyzed, then water quantity and quality as well as their relation with landuses were identified based on the previous study. Flow showed the similar pattern with precipitation but some discrepancies existed due to the distance between weather station(Gwangju) and study area. Watershed was modeled based on observed data using SWAT(Soil and Water Assessment Tool). Model calibration was conducted using data obtained in 2012 and validation was conducted using data in 2013. The coefficient of determination ($R^2$) between observed and modeled showed 0.6644 and 0.5176 for flow and TP, respectively for model calibration period. For validation period, $R^2$ was 0.7529 for flow and 0.7057 for TP, which were higher than calibration period. Hot spots were determined for watershed management by analyzing the amount of sediment and TP outcome from each sub-watershed. TP loading by landuse determined that cropland, of which the area takes only 5% from entire watershed, generated 53.6% of TP and residential and cowshed was responsible for 23.5% of TP loading.

  • PDF

Simulation of dam inflow using a square grid and physically based distributed model (격자 기반의 물리적 분포형 모형을 이용한 댐 유입량 모의)

  • Choi, Yun Seok;Choi, Si Jung
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.4
    • /
    • pp.289-300
    • /
    • 2024
  • The purpose of this study is to evaluate the applicability of the GRM (Grid based rainfall-Runoff Model) to the continuous simulation by simulating the dam inflow. The GRM was previously developed for the simulation of rainfall-runoff events but has recently been improved to enable continuous simulation. The target watersheds are Chungju dam, Andong dam, Yongdam dam, and Sumjingang dam basins, and runoff models were constructed with the spatial resolution of 500 m × 500 m. The simulation period is 21 years (2001 to 2021). The simulation results were evaluated over the 17 year period (2005 to 2021), and were divided into three data periods: total duration, wet season (June to September), and dry season (October to May), and compared with the observed daily inflow of each dam. Nash-Sutcliffe efficiency (NSE), Kling-Gupta efficiency (KGE), correlation coefficient (CC), and total volume error (VE) were used to evaluate the fitness of the simulation results. As a result of evaluating the simulated dam inflow, the observed data could be well reproduced in the total duration and wet season, and the dry season also showed good simulation results considering the uncertainty of low-flow data. As a result of the study, it was found that the continuous simulation technique of the GRM model was properly implemented and the model was sufficiently applicable to the simulation of dam inflow in this study.

Assessment of Phytoplankton Viability Along the Salinity Gradient in Seomjin River Estuary, Korea (섬진강 하구역에서 염분구배에 따른 식물플랑크톤 활성도 평가)

  • Lim, Youngkyun;Baek, Seung Ho
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.5
    • /
    • pp.513-523
    • /
    • 2017
  • We evaluated the viability of phytoplankton along the salinity gradient in the flood and ebb tides of spring tide of February and the ebb tide of neap tide of March 2017 in the Seomjin River Estuary. Additional laboratory experiments were also conducted to determine the reason of the pH changes along the salinity gradient using the field natural sample in February. In field, saltwater was well mixed at downstream vertically and the salinity gradient was horizontally appeared toward upstream of freshwater zone. There were strong negative correlations between salinity and nutrient (nitrate + nitrite R=0.99, p<0.001, and silicate R=0.98, p<0.001), implying that those two nutrients of freshwater origin were gradually diluted with mixing the saltwater. On the other hands, relatively high phosphate concentration was kept in the stations of saltwater over 15 psu, indicating that it was caused by resuspended sediments of Gwangyang Bay and downstream by tidal water mixing.Among phytoplankton community structure in winter, Eucampia zodiacus have occupied to be c.a. 70 % in the most stations. Based on the field survey results for survivability of phytoplankton by phytoPAM instrument, there was positive correlations between salinity and chlorophyll a (R=0.82, p<0.001) and, salinity and active chlorophyll a (R=0.80, p<0.001), implying that the dominant marine diatom species may have significantly damaged in low salinity conditions of upstream. Also, maximum mortality rate of phytoplankton caused by low salinity shock was appered to be 75% in the upstream station. In particular, the pH in spring tides of February had tended to increase with high phytoplankton accmulated stations, suggesting that it was related with absorption of $CO_2$ by the photosynthesis of dominant diatom. In laboratory experiments, phytoplankton mass-mortality caused by low salinity shock was also occurred, which is confirmed with reducing the photosynthetic electron transport activity. Following the phytoplankton mass-mortality, bacteria abundance was significantly increased in 24 hours. As a result, the mass-proliferating bacteria can produce the $CO_2$ in the process of biodegradation of diatoms, which can lead to pH decrease. Therefore, marine phytoplankton species was greatly damaged in freshwater mixing area, depending on along the salinity gradient that was considered to be an important role in elevating and reducing of pH in Seomjin River Estuary.

Monitoring of Pesticides in the Yeongsan and Seomjin River Basin (영산강 및 섬진강 수계 중 농약 분포 조사)

  • Lee, Young-Jun;Choi, Jeong-Heui;Kim, Sang Don;Jung, Hee-Jung;Lee, Hyung-Jin;Shim, Jae-Han
    • Korean Journal of Environmental Agriculture
    • /
    • v.34 no.4
    • /
    • pp.274-281
    • /
    • 2015
  • BACKGROUND: A lasting release of low levels of persistence chemicals including pesticides and pharmaceuticals into river has a bad influence on aquatic ecosystems and humans. The present study monitored pesticide residues in the Yeongsan and Seomjin river basins and their tributaries as a fundamental study for water quality standard of pesticides.METHODS AND RESULTS: Nine pesticides(aldicarb, carbaryl, carbofuran, chlorpyrifos, 2,4-D, MCPA, methomyl, metolachlor, and molinate) were determined from water samples using SPE-Oasis HLB(pH 2) and LC/MS/MS. Validation of the method was conducted through matrix-matched internal calibration curve, method detection limit(MDL), limit of quantification(LOQ), accuracy, precision, and recovery. MDLs of all pesticides satisfied the GV/10 values. Linearity(r2) was 0.9965- 0.9999, and a percentage of accuracy, precision, and recovery was 89.4-113.6%, 3.1-14.0%, and 90.8-106.2%, respectively. All pesticides exclusive of aldicarb were determined in the river samples, and there was a connection between the positive monitoring results and agricultural use of the pesticides.CONCLUSION: Monitoring outcomes of the present study implied that pesticides were a possible non-point pollutant source in the Yeongsan and Seomjin river basins and tributaries. Therefore, it is required to produce and accumulate more monitoring results on pesticides in river waters to set water quality standards, finally to preserve aquatic ecosystems.

Estimations of flow rate and pollutant loading changes of the Yo-Cheon basin under AR5 climate change scenarios using SWA (SWAT을 이용한 AR5 기후변화 시나리오에 의한 섬진강 요천유역의 유량 및 오염부하량 변화 예측)

  • Jang, Yujin;Park, Jongtae;Seo, Dongil
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.32 no.3
    • /
    • pp.221-233
    • /
    • 2018
  • Two climate change scenarios, the RCP (Representative Concentration Pathways) 4.5 and the RCP 8.5 in the fifth Assessment Report (AR5) by Intergovernmental Panel on Climate Change (IPCC), were applied in the Yocheon basin area using the SWAT (Soil and Water Assessment Tool) model to estimate changes in flow rates and pollutant loadings in the future. Field stream flow rate data in Songdong station and water quality data in Yocheon-1 station between 2013~2015 were used for model calibration. While $R^2$ value of flow rate calibration was 0.85 and $R^2$ value of water qualities were in the 0.12~0.43 range. The total study period was divided into 4 sub periods as 2030s (2016~2040), 2050s (2041~2070) and 2080s (2071~2100). The predicted results of flow rates and water quality concentrations were compared with results in calibrated periods, 2015s (2013~2015). In both RCP scenarios, flow rate and TSS (Total Suspended Solid) loadings were estimated to be in increasing trend while TN (Total Nitrogen) and TP (Total Phosphorus) loadings showed decreasing patterns. Also, flow rates and pollutant loadings showed larger differences between the maximum and the minimum values in RCP 4.5 than RCP 8.5 scenarios indicating more severe effect of drought and flood, respectively. Dependent on simulation period and rainfall periods in a year, flow rate, TSS, TN and TP showed different trends in each scenario. This emphasizes importance of considerations on time and space when analyzing climate change impacts of each variable under various scenarios.

A Stud on the Estimation of Leakage and the probing Leakage in the River Bank (하천제방의 누수탐사 및 누수량 평가에 관한 연구)

  • 김경수;조기태
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.6 no.4
    • /
    • pp.213-217
    • /
    • 1999
  • The river bank is one of the most important structure of fluvial hydraulic structure. Because the breaking of river bank is the cause of calamity, the durability and stability of river bank an very important factors. The breaking of river bank is the cause of the overflow of flood and the leakage of river bank. In this study, we investigated the leakage of river bank using the resistivity probing and estimated the volume of leakage using the weighted residual method The study basin of this study is the upstream of Sumji river basin and the factor of river bank is length 300 m and berm 2.0 m and width 4.5 m and height 4 m. We evaluated the leakage of river basin using using the resistivity probing and estimated the leakage volume using the weighted residual method. The result of this study, the leakage of river bank generated at the point of 39~45 m 80~90 m. 218~222 m. 214~250 m and the type of leakage is the rectangle and the polygon. And the leakage volume of this points evaluated 2.7$\times$$10^{-3}$ $\textrm{m}^3$/sec.

  • PDF