• Title/Summary/Keyword: 섬유혼입 콘크리트

Search Result 462, Processing Time 0.027 seconds

Carbonation Assessment of High-Strength Concrete Using Polypropylene Fiber after Fire Damage (폴리프로필렌 섬유를 혼입한 고강도 콘크리트의 화재피해 후 중성화 평가)

  • Byun, Yong-Hyun;Ryu, Dong-Woo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.20 no.3
    • /
    • pp.235-243
    • /
    • 2020
  • In recent years, the use of high-strength concrete has increased with increasing height and enlarging scale of the buildings However, it has been pointed out that the use of high-strength concrete is the most serious problem compared to ordinary concrete in terms of the spalling of concrete cross sections caused by fires. For this reason, fiber cocktail methods, which are made of polypropylene fibers, nylon fibers, etc., are mainly used to improve the fire resistance performance. However, the majority of research on high-strength concrete to which the fiber cocktail method was applied is mainly focused on the effect of reducing spalling, and few studies have investigated and analyzed the effect of micropores produced by melting PP fibers on the long-term durability of high-strength concrete after a fire. Therefore, in this study, the effect of micropores on the depth of carbonation was examined through carbonation tests and microstructure analysis, assuming high-strength concrete to which fiber-mixed construction method was applied, which caused fire damage.

Evaluation of Mechanical Properties and Crack Resistant Performance in Concrete with Steel Fiber Reinforcement and CSA Expansive Admixture (CSA 팽창재를 혼입한 강섬유 보강 콘크리트의 역학적 성능 및 균열 저항성능 평가)

  • Choi, Se-Jin;Park, Ki-Tae;Kwon, Seung-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.1
    • /
    • pp.75-83
    • /
    • 2014
  • In order to prevent brittle failure of concrete, steel fiber reinforcement is effective composite material. However ductility of steel fiber reinforced concrete may be limited due to shrinkage caused by large content of cement binder. Chemical prestressing for steel fiber reinforcement in cement matrix can be induced through expansive admixture and this can increase reinforcing effect of steel fiber. In this study, mechanical performances in concrete with CSA (Calcium sulfoaluminate) expansive admixture and steel fiber reinforcement are evaluated. For this work, steel fiber reinforcement of 1 and 2% of volume ratio and CSA expansive admixture of 10% weight ratio of cement are added in concrete. Mechanical and fracture properties are evaluated in concrete with steel fiber reinforcement and CSA expansive admixture. CSA concrete with steel fiber reinforcement shows increase in tensile strength, initial cracking load, and ductility performance like enlarged fracture energy after cracking. With appropriate using expansive admixture and optimum ratio of steel fiber reinforcement, their interactive action can effectively improve brittle behavior in concrete.

Shear Behavior of High-Strength Concrete Beams with Steel Fiber (고강도 강섬유보강콘크리트 보의 전단거동)

  • Karl, Kyoung-Wan;Hwang, Jin-Ha;Lee, Deuck-Hang;Ju, Hyun-Jin;Kim, Kang-Su;Cho, Hae-Chang
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.65-66
    • /
    • 2010
  • In this paper, an experimental investigation on three high-strength steel fiber reinforced concrete beams with 0.5%-1.0% steel fiber and the one without steel fiber, which led to shear failure, is reported to investigate the effectiveness of steel fibers as shear reinforcement. The test results showed that the shear strengths of high-strength concrete beams increased and had more ductile behavior as larger amount of steel fiber were included.

  • PDF

Engineering Properties of Concrete Enhanced with Rice Husk Ash and Polypropylene Fiber (폴리프로필렌 섬유 보강 RHA콘크리트의 공학적 특성)

  • Lee, Yun;Park, Ki-Tae;Kwon, Seung-Jun
    • The Journal of the Korea Contents Association
    • /
    • v.15 no.3
    • /
    • pp.427-437
    • /
    • 2015
  • Concrete, as a construction material, needs suitable reinforcement for tensile region due to weak tensile strength. Many researches on cement reduction have been attempted for $CO_2$ emissions during cement clinker production. In this paper engineering properties of concrete enhanced with polypropylene fiber (PPF) and rice husk ash (RHA) are evaluated. Fiber volume ratios of 0.125~0.375 and RHA replacement ratio of 0~20% are considered for concrete mixture. Lots of test including compressive, split, flexural and the related crack width, impact energy, and pull out test are performed and the results are evaluated considering the fiber ratios, fiber length and RHA replacement. Fiber and RHA ratios have dominant effects on tensile and compressive characteristics respectively, and the concrete with 0.125% of PPF and 10% of RHA shows the most effective enhancement for engineering properties. Appropriate addition of RHA and PPF are very effective both for engineering property enhancement and clean technology.

Influence of steel fiber contents on corrosion resistance of steel reinforcement (강섬유 혼입량이 철근 부식저항성능에 미치는 영향)

  • Kim, Seong-Do;Moon, Do-Young;Lee, Gyu-Phil
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.17 no.3
    • /
    • pp.283-293
    • /
    • 2015
  • In order to evaluate corrosion resistance of steel fiber-reinforced concrete, accelerated chloride migration and surface resistivity tests were conducted. In addition air content of fresh concrete, compressive strength and water absorption were measured for investigating fundamental characteristics of concrete. Two different water-cement ratios(0.44, 0.5) and three steel fiber contents(0.25%, 0.5%, 1%) were considered as variables. Note that all specimens cast with same compaction work. As a results, corrosion resistance decreased as steel fiber contents increased regardless of water-cement ratio when the concrete was compacted with same amount of work done. However, for concrete with same steel fiber content, the lower water-cement ratio showed the better corrosion resistance. It is found that enhancement of fluidity and enough compaction should be done for corrosion resistance of SFRC.

Mechanical Properties and Neutron Shielding Performance of Concrete with Amorphous Boron Steel Fiber (비정질 붕소강 섬유를 혼입한 콘크리트의 역학적 성능 및 중성자 차폐성능 평가)

  • Lee, Jun Cheol;Kim, Wha Jung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.17 no.1
    • /
    • pp.9-14
    • /
    • 2017
  • Mechanical properties and neutron shielding performance of concrete with amorphous boron steel fiber have been investigated in this study. The measurement of this investigation includes air contents, slump loss, compressive strength, flexural strength, flexural toughness and neutron shielding rate. Four different fiber volume fractions were selected ranging from 0.25% to 1.0% by volume for the amorphous boron steel fibers. The testing results showed that the flexural toughness and the neutron shielding rate were increase with the increase of volume fraction for amorphous boron steel fiber. Based on the result, it is concluded that the concrete with the amorphous boron steel fiber can be effectively applied to shield the neutron and to improve mechanical properties.

Mechanical Properties of Steel Fiber Reinforced Concrete Using Waste Glass (폐유리를 혼입한 강섬유보강 콘크리트의 역학적 특성)

  • 박승범;이봉춘
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.6
    • /
    • pp.1032-1039
    • /
    • 2002
  • Since recycling waste glass as a material for concrete has a great advantage environmentally and economically, the US, Japan and other countries have started recycling waste glass widely and accumulating the technology of manufacturing equipment and its construction. However, there is no practical data on the mechanical property of concrete using waste glass. In this study, the mechanical property of the steel fiber reinforced concrete using waste glass was analyzed in terms of waste glass content(20vo1. %, 40vo1. % as a part of fine aggregate) and steel fiber content(0.5~ 1.5vol.%). The results of this study are as follows : The workability of the concrete including steel fiber and waste glass decreases, as the inclusion rate of waste glass and steel fiber increases. The tensile strength, flexural strength and flexural toughness of the concrete including waste glass increase considerably, as the inclusion rate of steel fiber increases. From the results, the appropriate inclusion rate of steel fiber and waste glass is thought to be 1.0vol. % and 20vo1. %, respectively.

The Effects of Reinforcing of Steel Fiber on the Strength Properties of the High-Strength Concrete (강섬유의 보강이 고강도 콘크리트의 강도 특성에 미치는 영향)

  • 구봉근;정경섭;김태봉
    • Magazine of the Korea Concrete Institute
    • /
    • v.4 no.2
    • /
    • pp.93-101
    • /
    • 1992
  • 강섬유를 혼입한 고강도 콘크리트의 강도 특성에 관한 연구를 수행하였다. 이를 위하여 고성능 감수제를 이용하여 제조한 고강도 콘크리트에 강섬유를 0, 0.5, 1.0, 1.5%로 변화시키면서 실험을 실시하였고, 또한 강섬유의 길이와 휨 시험편의 크기에 따른 강도의 변화에 대하여도 연구하였다. 연구결과 강섬유 보강 고강도 콘크리트의 압축강도는 강섬유의 혼입률에 따라 크게 영향을 받지 않으나, 할열인장강도와 휨강도는 강섬유 혼입률과 길이에 따라 크게 증가하였고, 특히 최대하중을 지나서도 응력의 감소가 작아 연성이 크게 증가하는 것으로 나타났다.

An Experimental Study on the Seawater Resistance of Steel Fiber Reinforced concrete Using Fly Ash (플라이애쉬를 혼입한 강섬유보강콘크리트의 내해수성에 관한 실험적 연구)

  • 박승범;오광진
    • Magazine of the Korea Concrete Institute
    • /
    • v.9 no.3
    • /
    • pp.189-197
    • /
    • 1997
  • This paper describes an experimental study on the seawater resistance of steel fiber reinforced concrete. The test methods adopted for this study are divided into long-term immersion test and acceleration test by wetting and drying. Tests were carried out to evaluate the procedures which were measured for nine months about reduction in dynamic modulus, length change and compressive strength. Resistance indicators are the water-cement ratio, the content of steel fiber, the content of fly ash, the immersion water(artificial seawater or freshwater) and the types of curing. The seawater resistance of the appropriate additions of steel fiber and fly ash have apparently increased.

A Theoretical and Experimental Investigation on the Flexural Behavior of Reinforced Concrete Members Containing Steel Fibers (강섬유를 혼입한 철근콘크리트부재의 휨거동에 관한 이론 및 실험연구)

  • 오병한
    • Magazine of the Korea Concrete Institute
    • /
    • v.3 no.3
    • /
    • pp.129-139
    • /
    • 1991
  • The mechanical hehavior of relIlforced concrete beams with steel fibers is investigated 111 the present study. An expenmental program was set up and several series of rem forced concrete beams have been tested, including two senes of singly-reinforced concrete beams and one senes of doubly-reinforced concrete beams. It was found from th, :se measurements that the crack widths lIlcrease almost llIlearly With the lIlcrease of steel stress and that the crack Widths at the same loadlJ1g stages are greatly reduced as the contents of steel fibers increase. The present study also IJ1chcates that the ductiiIty and the ultJmate resistance are remarkably enhanced due to the addition of steel fibers. A theoretical mex1e1 for the flexural analysis of fiber-reinforced concrete beam which takes into account the effects of fibers JS also proposed.