• Title/Summary/Keyword: 섬유혼입률

Search Result 190, Processing Time 0.024 seconds

Flexural Performance Evaluation of HPFRCC Using Hybrid PVA Fibers (하이브리드 PVA 섬유를 이용한 HPFRCC의 휨 성능 평가)

  • Kim, Young-Woo;Min, Kyung-Hwan;Yang, Jun-Mo;Yoon, Young-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.753-756
    • /
    • 2008
  • HPFRCC (High-Performance Fiber Reinforced Cementitious Composites), which is relatively more ductile and has the characteristic of high toughness with high fiber volume fractions, can be used in structures subjected to extreme loads and exposed to durability problems. In the case of using PVA(polyvinyl alcohol) fibers, it is noted by former studies that around 2% fiber volume fractions contributes to the most effective performance at HPFRCC. In this study, therefore, compressive and flexural tests were implemented to evaluate the compressive and flexural capacities of HPFRCC while the total fiber volume fractions was fixed at 2% and two different PVA fibers were used with variable fiber volume fractions to control the micro-crack and macro-crack with short and long fibers, respectively. Moreover, specimens reinforced with steel and PVA fiber simultaneously were also tested to estimate their behavior and finally find out the optimized mixture. In the result of these experiments, the specimen consists of 1.6% short fibers (REC 15) and 0.4% long fiber (RF4000) outperformed other specimens. When a little steel fibers added to the mixture with 2% PVA fibers, the flexural capacity was increased, however, when high steel fiber volume fractions applied, the flexural capacity was decreased.

  • PDF

Alkali-Silica Reaction of Mortar Containing Waste Glass Aggregates (폐유리 골재를 혼입한 모르터의 알칼리 실리카 반응에 관한 연구)

  • 박승범;이봉춘;권혁준
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.3
    • /
    • pp.213-220
    • /
    • 2001
  • Incorporation of wastes glass aggregate in mortar may cause crack and this may result in the strength reduction due to alkali-silica reaction(ASR) and expansion. The purposes of this study were to investigate the properties of alkali-silica expansion and strength loss through a series of experiments which had a main experimental variables such as waste glass aggregate contents, glass colors, fiber types, and fiber contents. The steel fibers and polypropylene fibers were used for constraining the ASR expansion and mortar cracking. From the result, green waste glass was more suitable than brown one because of low expansion. And in this accelerated ASTM C 1260 test of waste glass, pessimum content can not be found. Also, when used the fibers with waste glass, there is an effect on reduction of expansion and strength loss due to ASR between the alkali in the cement paste and the silica in the waste glass. Specially, adding 1.5 vol.% of steel fiber to 20% of waste glass, the expansion ratio was reduced by 40% and flexural strength was developed by up to 110% comparing with only waste glass(80$\^{C}$ H$_2$O curing).

Bond Properties of High Strength Steel Rebar in High Strength Steel Fiber Reinforced Concrete (강섬유 보강 고강도콘크리트와 고장력 철근의 부착 특성)

  • Won, Jong-Pil;Park, Chan-Gi;Jang, Chang-Il;Lee, Sang-Woo;Kim, Wan-Young
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.5
    • /
    • pp.631-637
    • /
    • 2007
  • This study was to evaluate bond properties between high-strength steel fiber reinforced concrete and high strength steel rebar. An direct bond test were performed to evaluate the bond performance of high strength steel rebar in two types of high-strength concrete with steel fiber volume fraction (0, 20, $40kg/m^3$). Also, relative bond strength was defined to determine the effect of steel fiber volume fraction on bond strength. The bond test results showed that the bond performance of high strength steel rebar and high strength concrete tended to increase with higher compressive strength and steel fiber volume fraction. Relative bond strength which performed to analyze effect of steel fiber volume fraction showed increased relative bond strength with increased steel fiber volume fraction.

Evaluation of Fire Resistance Performance of Polymer Modified Cement Mortar Using Polypropylene Fiber (폴리프로필렌 섬유를 혼입한 폴리머 시멘트 모르타르의 내화성능 평가)

  • Jeon, Ki-Soo;Sim, Sang-Rak;Lee, Young-Do
    • Journal of the Korea Institute of Building Construction
    • /
    • v.23 no.2
    • /
    • pp.133-142
    • /
    • 2023
  • In this study, the fire resistance capabilities of polypropylene fiber-reinforced polymer-modified cement mortar were assessed to guarantee the fire resistance fo this materials, commonly employed in the repair of concrete structures. Experimental outcomes revealed that an increased water and polymer content heightened the likelihood of spalling, while longer polypropylene fibers and elevated polymer concentrations proved more effective in mitigating spalling.

Bond Properties of GFRP Rebar with Cover Thickness and Volume Fraction of Steel Fiber (강섬유 혼입률과 피복두께에 따른 GFRP 보강근의 부착특성)

  • Choi, Yun-Chul
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.6
    • /
    • pp.761-768
    • /
    • 2012
  • The purpose of this study is to investigate bond properties of GFRP used in SFRC (Steel fiber reinforced concrete) and normal concrete. The experimental variables were rebar diameter (D13, D16), steel fiber volume fraction (0~2%) and cover thickness ($1.5d_b$, $5.4d_b$). The experimental results showed a different failure mode depending on the cover thickness. Through the tested specimens, splitting failure occurred for the specimens with small cover thickness and pull out failure occurred in the specimens with large cover thickness. Introduction of steel fiber caused the specimens to have more ductile behavior of bond stresss-lip after peak stress, but they did not increase the bond strength significantly. These failure modes were shown in both steel reinforcement and GFRP. However, from the difference of micro structure of bond failure mechanism between steel rebar and GFRP rebar, more ductile behavior was observed in GFRP-specimens after maximum bond strength was reached.

Comparsions for Flexural Performance of Amorphous Steel Fiber Reinforced Concrete (비정질강섬유보강콘크리트의 휨성능 비교분석)

  • Kim, Byoung-Il;Lee, Sea-Hyun
    • Resources Recycling
    • /
    • v.24 no.3
    • /
    • pp.66-75
    • /
    • 2015
  • The flexural performance of amorphous steel fibers having environmental and economy benefits due to relatively short manufacturing process were evaluated as well as that of hooked steel fibers by varing fiber length and volume fraction. Fiber lengths were 10 mm, 20 mm, 30 mm and fiber volume fractions were varied from 0.3% to 1.2%. Test results with flexural performance showed that mixing design needs to be careful because of relatively high volume of amorphous steel fiber compared to hooked steel fibers. High flexural strength was obtained from both longer fiber length and higher volume fraction. Residual strength and toughness of amorphous steel fiber were similar to that of hooked steel fiber, even though rapid dropping of applied load right after concrete matrix breaking. It can be judged that relatively high ability of energy dissipation around first cracking area relatively overcome rapid dropping of loading.

Effect of Recycled PET Fiber Geometry and Length on the Plastic Shrinkage Cracking of Cement Based Composites (재생 PET 섬유의 형상 및 길이가 시멘트 복합 재료의 소성 수축 균열에 미치는 영향)

  • Won, Jong-Pil;Park, Chan-Gi;Kim, Hwang-Hee;Lee, Sang-Woo
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.2
    • /
    • pp.233-239
    • /
    • 2007
  • The main objective of this study was to evaluate the effect of recycled PET fiber made from waste PET bottle on the control of plastic shrinkage cracking of cement based composites. PET is blown as a plastic material and used in a variety products such as a beverage bottle. However, waste PET bottles are thrown after the usage, raising huge problems in terms of the environment. Thus, the research on the method to recycle the PET bottles indicates important aspects in environment and economy. The method to recycle waste PET bottles as a reinforcing fiber for cement based composites is one of effective methods in terms of the recycle of waste PET bottles. In this research, the effect of recycled PET fiber geometry and length on the control of plastic shrinkage was examined through thin slab tests. A test program was carried out to understand the influence of fiber geometry, length and fiber volume fraction. Three type of recycled PET fibers including straight, twist crimped and embossed type. Three volume fraction and two fiber length were investigated for each of the three fiber geometry. Test results indicated that recycled PET fibers are effective in controlling plastic shrinkage cracking in cement based composites. In respect to effect of length of fiber, longer fiber was observed to have efficient cracking controlling with low volume fraction in same fiber geometry while shorter fiber controled plastic shrinkage cracking efficiently as addition rate increase. Also, embossed type fibers were more effective in controlling plastic shrinkage cracking than other geometry fiber at low volume fraction. But, for high volume fraction, straight type fibers were most effective in plastic shrinkage cracking controlling in cement based composites.

The Effect of Fiber Volume Fraction on the Tension Softening Behavior of Steel Fiber-Reinforced Ultra High Strength Concrete (섬유혼입률이 강섬유보강 초고강도 콘크리트의 인장연화거동에 미치는 영향)

  • Kang, Su-Tae;Hong, Ki-Nam;Han, Sang-Hoon;Kim, Sung-Wook
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.1
    • /
    • pp.13-20
    • /
    • 2009
  • The influence of steel fiber volume on the tension softening behavior in steel fiber-reinforced ultra high strength concrete was investigated. Three-point bending test (TPBT) with notched beams was performed and inverse analysis method by Uchida et al. was adopted to obtain the tension softening behaviors from the results of TPBT. It could be found that the intial stiffness was constant regardless of steel fiber volume, the increase of steel fiber volume fraction made the tensile strength higher, but all of the curves converged on an asymptote with a crack width. It was proposed the equation of softening curve expressed by combination of plastic behavior part and exponential descending behavior part considering the steel fiber volume fraction and $\omega_0$, which is corresponding to the maximum crack width of plastic area. Thereafter, the crack propagation analysis using finite element method with smeared crack model was also carried out and it was confirmed that the proposed equation had a good agreement with the experimental results.

Fire Resistance of High Strength Concrete Pepending on Curing Method and Polypropylene fiber (양생방법 및 PP 섬유 혼입률 변화에 따른 고강도 콘크리트의 내화특성)

  • Son, Ho-Jung;Pei, Chang-Chun;Kim, Won-Ki;Han, Min-Cheol;Yang, Seong-Hwan;Han, Cheon-Goo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.481-482
    • /
    • 2009
  • This study analyzed fire resistance characteristics of high strength concrete according to changes in curing method and PP fiber content, and the results are as follows. First in case of standard curing, spalling was prevented at PP fiber content of 0.05 % or higher. Autoclave and steam curing showed prevention of spalling at content of 0.1 % or higher. For residual compressive strength, measurement of strength for plain was impossible due to spalling phenomenon. A satisfactory trend was shown with increase in PP fiber content with the strength of about 30 MPa.

  • PDF

Effect of Fiber Volume Fractions on Flow and Uniaxial Tension Properties of 3D Printed SHCC (3D 프린팅용 SHCC의 흐름값과 1축 인장 특성에 미치는 섬유 혼입률의 영향)

  • Chang-Jin Hyun;Hyo-Jung Kim;Byung-Jae Lee;Yun-Yong Kim
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.3
    • /
    • pp.83-90
    • /
    • 2024
  • This study investigates the 3D printing characteristics of strain hardening cement composites (SHCC) reinforced by PVA fibers. Three SHCC mixtures with diverse fiber volume fractions (1.0% for F1.0 mixture, 1.5% for F1.5 mixture, and 1.8% for F1.8 mixture) were designed. Except for the F1.0 mixture, all mixtures met the necessary conditions for multiple micro-cracking, with higher fiber volume fractions more readily satisfying these conditions. The flow values of three SHCC mixtures were within the 3D printable range of 120~160 mm, exhibiting decreased flow values with increasing the fiber volume fractions. Observation of the printed SHCC surfaces indicated that the F1.0 mixture had a Level-3 (good) rating, while F1.5 and F1.8 were rated as Level-2 (average). Higher fiber volume fractions resulted in poorer surface quality, thus, further research needs to be performed for modulating SHCC mixture suitable for 3D printing. The uniaxial tension behavior showed that the F1.0 mixture failed at lower strain, whereas F1.5 and F1.8 exhibited higher strain performance with multiple micro-cracks occurring.