• Title/Summary/Keyword: 섬유일체형

Search Result 24, Processing Time 0.036 seconds

Evaluation of Support Performance of Fiber-Net Integrated Shotcrete in Tunnel Support System (숏크리트용 섬유 그물망 일체형 터널 지보시스템의 지보 성능 평가)

  • Kim, Jiyoung;Choi, Seongcheol
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.4
    • /
    • pp.545-552
    • /
    • 2020
  • This study evaluated the support performance of fiber-net integrated shotcrete in tunnel support system developed for the purpose of improving constructability and stability while fully performing its mechanical performance as a tunnel support materials by four-point bending test, two-dimensional numerical analysis, and cross-sectional analysis. As a result of evaluating the flexural performance through a four-point bending test, in the case of fiber-net reinforced shotcrete, the tensile performance of fiber-net resulted in a continuous increase in load after crack occurrence, unlike steel fiber reinforced shotcrete. Also, the results of the tunnel cross-sectional structure analysis for ground conditions and the cross-sectional analysis of fiber-net and steel fiber reinforced shotcrete showed that sufficient support performance can be exhibited even if the thickness of fiber-net reinforced shotcrete was reduced compared to the previous one. Additionally, through these results, the support pattern of fiber-net integrated shotcrete in tunnel support system, which can be applied efficiently to the construction sections requiring higher stability among the rock mass class III, was proposed.

Evaluation of Field Applicability of Shotcrete for Fiber-net Integrated Tunnel Support System through Mock-up Test (목업 테스트를 통한 숏크리트용 섬유 그물망 일체형 터널 지보시스템의 현장 적용성 평가)

  • Kim, Jiyoung;Choi, Seongcheol
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.1
    • /
    • pp.72-78
    • /
    • 2020
  • The present study developed shotcrete for fiber-net integrated tunnel support system, which consists of fiber-net support materials including netlike fiber and shotcrete and integration technology between support materials. In addition, in order to evaluate the field applicability of the developed tunnel support system and compare with the performance of steel fiber reinforced shotcrete, mock -up test was conducted on the mock -up structure. The test results show that in the case of shotcrete containing coarse aggregate(S20A5RP10-C), the excessive rebound rate occurred as the secondary shotcrete was dropped during construction due to the degradation in bond performance with fiber-net. Also, in the case of steel fiber reinforced shotcrete, the amount of cast shotcrete fell short of target value due to the fiber ball and the degradation of pumpability. On the other hand, the amount of cast mortar shotcrete(S20A5RP10-M) and the installation position of fiber-net were almost close to the target values, and the lower rebound rate occurred compared to the steel fiber reinforced shotcrete.

Geometric Modeling of the Skin-Stringer Integrated Panel with Three-Dimensional Woven Composite (3차원 직조 복합재료 스킨-스트링거 일체형 패널의 기하학적 모델링)

  • Yeonhi, Kim;Hiyeop, Kim;Jungsun, Park;Joonhyung, Byun
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.6
    • /
    • pp.8-17
    • /
    • 2022
  • This paper presents a novel geometric modeling technique to predict the mechanical properties of an aircraft wing's skin-stringer integrated panel. Due to mechanical and adhesive fastening, this panel is vulnerable to stress concentration and debonding, so we designed it to integrate the skin and stringer using three-dimensional woven composites. Geometric modeling was conducted by measuring the geometric parameters of the specimen and defining the pattern of the yarns as functions. We used a weighted average model with iso-strain and iso-stress assumptions to predict the mechanical properties of the panel parts. We then compared the results of a finite element analysis with a compression test to verify the accuracy of our model. Our proposed technique proved to be more efficient than the traditional experimental method for predicting the mechanical properties of skin-stringer integrated panels.

A Study on Improving Fatigue Life for Composite Cylinder with Seamless Integrated Liner (이음매 없는 일체형 라이너를 갖는 복합재 압력용기의 피로수명 향상에 대한 연구)

  • Kim, Hyo-Joon
    • Journal of the Korean Institute of Gas
    • /
    • v.17 no.6
    • /
    • pp.46-51
    • /
    • 2013
  • Composite cylinder is used by hydrogen fuel cell vehicles and natural gas vehicles because of high specific modulus, specific strength and fatigue resistance. composite cylinder has a seamless integrated liner and it is fully overwrapped with structural fibers of high strength carbon fibers in an epoxy matrix. In this study, filament winding pattern and autofrettage pressure design technique are presented considering structural weakness of knuckle and compressive residual stress. Presented methodology is verified by pressure cycling test of composite cylinders.

Development and Wearability Evaluation of All-Fabric Integrated Smart Jacket for a Temperature-regulating System Based on User Experience Design (사용자 경험 중심의 섬유일체형 온도조절 스마트재킷 개발과 착용성 평가)

  • Kim, Sareum;Roh, Jung-Sim;Lee, Eun Young
    • Fashion & Textile Research Journal
    • /
    • v.18 no.3
    • /
    • pp.363-373
    • /
    • 2016
  • This study aims to develop an all-fabric integrated smart jacket in order to create a temperature-regulating system based on a user experience design. For this research, previous research technologies of a textile switch interface and a temperature-regulating system were utilized and a unifying technology for the all-fabric integrated smart jacket was developed which can provide the appropriate temperature environments to the human body. A self-heating textile was applied at the areas of the back and hood in the final tested jacket, and an embroidery circuit was developed in the form of a rectangle in the back and in both ears of the hood, taking into account the pattern of the jacket part where it was be applied and the embroidery production method. The textile switch interface was designed in a three-layer structure: an embroidery circuit line in a conductive yarn, an interval material, and a conductive sensing material, and it was made to work with the input and output sensors through the multiple input method. After the all-fabric integrated smart jacket was produced according to the pattern, all of the textile band lines for transmission were gathered and connected with a miniature module for controlling temperature and then integrated into the inside of the left chest pocket of the jacket. After the users put on this jacket, they were asked to assess the wearing satisfaction. Most of them reported a very low level of irritation and discomfort and said that the jacket was as comfortable as everyday clothing.

The Development of a textile material for transportation through the companies cooperation linking (수송용 섬유소재산업 글로벌경쟁력강화 초광역벨트 연계기술개발)

  • Park, S.M.;Jeon, S.K.;Kim, M.S.;Yoon, J.G.;Kim, M.S.
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2012.03a
    • /
    • pp.17-17
    • /
    • 2012
  • 수송용 섬유소재는 자동차, 항공기 또는 선박 등의 교통 및 운송 분야에 기여하는 사용되는 섬유소재를 말하며, 내장재, 각종 호스류, 벨트류, 타이어, 안전용품, 필터류 등을 포함하고 일반적으로 섬유, 발포체, 고무, 플라스틱, 접착제 등 유기소재가 결합된 복합체이다. 기존 섬유기술의 혁신과 더불어 IT, NT, BT, ET 등 첨단 기술과의 융합에 의한 고성능 극한 슈퍼섬유, 나노 복합섬유 등의 신소재를 개발하여 산업 전반에서 플라스틱의 금속소재 대체수요를 증가시키고 산업자재의 고성능화, 고기능화, 다양화를 이루기 위해 다양한 노력이 진행하고 있다. 현재 수송용 섬유소재 산업은 기술의 연결고리가 부족하며, 선도기업 및 원천기술이 부족하며, 자동차용 섬유부품소재 관련 기업의 역량도 부족한 실정이다. 이에 광역경제권 연계협력사업을 통해 생산기반의 대경권(대구경북)과 수요중심의 동남권(부산경남)의 네트워크를 강화하여 완성품 업체 및 수요기업과의 네트워킹을 강화하고자 한다. 따라서 본 연구에서 수송용 섬유소재개발, 수송용 친환경 oam-skin 일체형 표피재 개발, 고속성형 복합소재 및 수송용 경량부품 개발, 초경량 고내열 고강도 섬유활용 하이브리드 wire & cable 개발 등 수송용 섬유소재를 개발하고, 또한 수송용 섬유소재의 생산-수요 연계를 통한 투자활성화, 기술개발, 소재 산업 육성을 강화하여, 산학연네트워크구축, 지역 간 협력 및 국제적 협력, 생산-수요기반의 연계협력시스템을 활용한 자립형 수송용 소재 공급기지 완비하는 데 목적이 있다.

  • PDF

Treatment of Phosphorus and Suspended Solid in Reject Water of Sewage Using an Integrated Slow Mixing/Sedimentation and Net Fit Fiber Filtration System (일체형 완속교반/침전 그물망 압착식 섬유여과장치를 이용한 하수처리장 반류수 내 고농도 인 및 부유물질 처리)

  • Kim, Jeongsook;Kim, Min-Ho;Kim, Mi-Ran;Jang, Jeong-Gook
    • Korean Chemical Engineering Research
    • /
    • v.55 no.6
    • /
    • pp.816-821
    • /
    • 2017
  • An integrated slow mixing/sedimentation and net fit fiber filtration system has been developed to reduce the high concentrations of suspended solid (SS) and total phosphorus (T-P) in the reject water from sewage/wastewater. A filtration device used in this experiment consists of coagulation, in-line mixing, air injection, slow mixing/sedimentation, and filtration processes. The performance test using this device was carried out with six operational modes for reject water from sewage treatment plant. Experimental conditions used were 16.7, 33.3, 41.7 and 50.0 ton/day of flow rate and 2~4 of Al/P molar ratio. By injection of coagulant in each operational mode, the high removal efficiencies of SS and T-P were obtained, but continuous operation time was decreased to 7.8~11.4 min in most modes. However, when the Mode 5 of the developed filtration device was applied, the continuous operation time was maintained up to 88.2 min. Also, it was found that the continuous operation time in the Mode 5 using the developed system was increased from 8 to 11.3 times longer than those in other modes. Backwashing flow rate was also very low at 5.4% of total filtered water. Therefore, it can be concluded that the Mode 5 of the developed filtration system was the most efficient treatment method for the removal of high concentrations of SS and T-P.

Thermal and Geometrical Effect on the Motor Performance of Composite Squirrel Cage Rotor (복합재료 농형 회전자의 열적, 기하학적 특성이 모터 성능에 미치는 효과)

  • 장승환;이대길
    • Composites Research
    • /
    • v.14 no.3
    • /
    • pp.77-89
    • /
    • 2001
  • Since the critical whirling vibration frequency of high speed built-in type motor spindle systems is dependent on the rotor mass of the built-in motor and the spindle specific bending modulus, the rotor and the shaft were designed using magnetic powder containing epoxy and high modulus carbon fiber epoxy composite, respectively. In order to increase the amount of the magnetic flux of the composite squirrel cage rotor of an AC induction motor, a steel core was inserted into the composite rotor. From the magnetic analysis, the optimal configurations of steel core and conductor bars for the dynamic characteristics of the rotor system were determined and proposed. The temperature dependence of composite squirrel cage rotor materials was investigated by various experiments such as TMA, DMA and VSM.

  • PDF