• Title/Summary/Keyword: 섬유시트

Search Result 139, Processing Time 0.025 seconds

Structural Changes of Nylon 6/Clay Nanocomposite Film on Drawing Condition (Nylon 6/Clay 나노복합재 필름의 연신조건에 따른 구조적 변화)

  • 강영아;김경효;이양헌;조현혹
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.04a
    • /
    • pp.352-353
    • /
    • 2003
  • Clay 분산 유/무기 나노복합재 제조기술은 실리케이트 층상구조의 점토광물을 나노 스케일의 시트상의 기본 단위로 박리(exfoliation)하여 고분자수지에 분산시킴으로써 범용 고분자의 낮은 기계적 물성의 한계를 엔지니어링 플라스틱 수준으로까지 올리고자 하는 것으로서, 기존의 무기 충진재 및 강화재의 입자크기(〉1 $\mu\textrm{m}$)를 나노 스케일까지 분산시켜 기존 무기물 충진 복합재의 단점을 한층 보완하는 것을 목표로 하고 있어 성능 및 원가 면에서 매우 유리한 방법으로 21세기의 복합재료 생산시장의 판도에 상당한 변화를 가져오게 할 수 있는 핵심기술이라 할 수 있다. (중략)

  • PDF

Flexural Strength of Reinforced Concrete T Beams Strengthened with Soffit and Web Fiber Sheets. (섬유시트로 밑면과 옆면이 보강된 T형 철근콘크리트보의 휨 강도)

  • 박대효;이규철
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.469-474
    • /
    • 2002
  • Recently fiber sheets are used for strengthening the damaged concrete structures due to its many advantages such as its durability, non-corrosive nature, low weight, ease of application, cost saving, control of crack propagation, strength to thickness ratio, high tensile strength, serviceability and aesthetic. However, the lack of analytical procedures for predicting the nominal moment capacity by the fiber sheet reinforcement leads to difficulties in the effective process of decisions of the factors in the strengthening procedure. In this work, flexural strengthening effects by fiber sheets bonded on soffit and web of the member are theoretically studied for the reinforced concrete T beam. The analytical solutions are compared with experimental results of several references to verify the proposed approach.

  • PDF

Study on the Self Diagnosis of Reinforced Concrete Beam Repaired by Patch Type Composite with Optical Fiber Sensors (광섬유 센서를 이용한 패치형 복합재료 보강 구조물에서의 진단기법에 관한 연구)

  • Lee, Jeong-Geun;Han, Seong-Do;Um, Jin-Seong;Lee, Jeong-Gyu;Jeong, Cheol;Kim, Gi-Su
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.04a
    • /
    • pp.1-4
    • /
    • 2003
  • 사회기반기설을 구축하는 다양한 토목·건축 분야의 주요 콘크리트 구조부재에 탄소섬유시트를 비롯한 섬유복합재료를 이용하여 보수·보강하는 공법은 최근에 세계적으로 많이 활용되고 있는 신공법 중에 하나이다. 기존의 보수·보강재료에 비해 섬유 복합재료에 의한 시공방법의 장점은 구조부재의 내하력을 증가시킬 수 있고 기존에 발생한 균열을 구속하는 효과를 얻을 수 있다. (중략)

  • PDF

Changes on the Fine Structure of PBT Sheets with Various Drawing Methods (PBT시트의 연신 방법에 따른 미세구조 변화)

  • Lee, Sun-Hee;Cho, Hyun-Hok;Kazuo Nakayama
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.10b
    • /
    • pp.197-198
    • /
    • 2003
  • Poly(butylene terephthalate)(P5T) has long history as an engineering thermoplastic. PBT was first introduced commercially to the market place as an injection molding resin about 1969 by Celanese Plastics in the U.S.A. It is still widely used as a molding resin. Processing or forming methods for solid-phase deformation, such as stretching, hydrostatic extrusion. roller stretching, rolling, and so on can improve the mechanical properties effectively. (omitted)

  • PDF

An experimental study for bending behavior of RC beams strengthened with glass fiber sheet (유리 섬유시트로 보강된 실제크기 철근 콘크리트 보의 휨 거동에 대한 실험적 연구)

  • Kim, Seong-Do;Seong, Jin-Wook
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.274-280
    • /
    • 2008
  • To investigate the flexural behavior of real size RC beams strengthened with glass fiber sheets, 9 strengthened beams of real size are experimented and the results are compared with those of existing experimental studies. Experiments are considered glass fiber sheets, the number of fiber sheets, and the existence of U-wrap. By the results of experiments, the failure behavior and crack types of real size RC beams are almost equal to those of the small size RC beams, and the debonding and not the concrete cover delamination are occurred. It can be found from the load-deflection curves that as the number of fiber sheets is increased, the ductility of real size RC beam is more decreased than that of the small size RC beam. For the strengthening method with glass fiber sheets of the real size RC beams, it can be confirmed that the finding a solution to the bonding problem is required

  • PDF

An experimental study for bending behavior of real size RC beams strengthened with carbon fiber sheets (탄소 섬유시트로 보강된 실제크기 철근 콘크리트 보의 휨 거동에 대한 실험적 연구)

  • Kim, Seong-Do;Seong, Jin-Wook
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.574-580
    • /
    • 2009
  • This study is investigate the bending behavior of real size RC beams strengthened with carbon fiber sheets. For experimental study, 1 control beam and 8 strengthened beams of real size(4 NU-beams and 4 U-beams) are tested and compared. NU-beam has not a V-shaped band and V-beam has a V-shaped band. The variables of experiment are composed of the number of carbon fiber sheets, the existence of U-shaped band, and four point loading, etc. The experimental results showed that the strengthening system with U-shaped band controls the premature debonding and provides a more ductile failure mode than the strengthening system without V-shaped band. It can be found from the load-deflection curves that as the number of fiber sheets is increased, the maximum strength and the flexural rigidity is increased. For the strengthening method with carbon fiber sheets of the real size RC beams, it is required the finding a solution to the bonding problem.

  • PDF

An Experimental Study on RC Slab Strengthened with Fiber (섬유시트로 보강된 RC 스래브의 실험적 연구)

  • Li, Zhi-Yong;Choi, Hyoung-Suk;Kim, Seong-Do;Cheung, Jin-Hwan
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.519-524
    • /
    • 2007
  • Recently, Fiber sheets have been used for strengthening the deteriorated reinforced concrete RC slabs because of its resistant capacity of corrosion and repairing works. The purpose of this study is to carry out the experimental studies on thirteen kinds of RC slabs and to investigate the behavior of RC slabs form the experimental results. Test parameters are the strengthening material, the number of sheet layer and strengthening direction. The behavior of strengthened He: slabs is represented by crack load-deflection curves and maximum load. And the parametric study based on the nonlinear FEM analysis are performed and its results are discussed.

  • PDF

Seismic Strengthening and Performance Evaluation of Damaged R/C Buildings Strengthened with Glass Fiber Sheet and Carbon Fiber X-Brace System (GFS-CFXB 내진보강법을 이용한 지진피해를 받은 R/C 건물의 내진성능 평가 및 내진보강 효과)

  • Lee, Kang-Seok
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.6
    • /
    • pp.667-674
    • /
    • 2013
  • Improving the earthquake resistance of buildings through seismic retrofitting using steel braces can result in brittle failure at the connection between the brace and the building, as well as buckling failure of the braces. This paper proposes a new seismic retrofit methodology combined with glass fiber sheet (GFS) and non-compression X-brace system using carbon fiber (CFXB) for reinforced concrete buildings damaged in earthquakes. The GFS is used to improve the ductility of columns damaged in earthquake. The CFXB consists of carbon fiber bracing and anchors, to replace the conventional steel bracing and bolt connection. This paper reports the seismic resistance of a reinforced concrete frame strengthened using the GFS-CFXB system. Cyclic loading tests were carried out, and the hysteresis of the lateral load-drift relations as well as ductility capacities were investigated. Carbon fiber is less rigid than the conventional materials used for seismic retrofitting, resulting in some significant advantages: the strength of the structure increased markedly with the use of CF X-bracing, and no buckling failure of the bracing was observed.

Evaluation on the Basic Properties of Polyurethane Composite Sheet Reinforced with Non-Woven Fabric (면섬유가 보강된 폴리우레탄계 복합시트의 기초 물성 평가)

  • Kim, Ji-Hyun;Do, Seung-Bae;Park, Jeong-Won;Nam, Gee-Yoong;Chung, Chul-Woo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.05a
    • /
    • pp.238-239
    • /
    • 2017
  • Waterproofing is a very important process in terms of durability of buildings. The materials used for waterproofing work to protect the concrete structure from external deterioration factors. In particular, the waterproofing materials applied to the exterior of the concrete structure have various problems due to changes in the external environment and variables in the construction process. The waterproof layer is repeatedly dried and shrunk according to changes in the external moisture environment, and the surface may be deteriorated due to exposure to long-term sunlight. In the case of the roof waterproofing in the structure, the waterproof layer which does not have a sufficient curing period shows much swelling and floating phenomenon. These defects, such as swelling and lifting, account for most of the defects that occur in the waterproof layer of the concrete slabs. Generally, it is difficult to expect the same level of performance as the initial state even if the waterproofing work is repaired when a defect occurs. Therefore, it is possible to reduce the defects of the waterproof layer such as swelling and lifting by forming a waterproof layer which can be integrated with the concrete surface by using a polyurethane type waterproofing material having a relatively low defective ratio compared to other waterproofing materials. So in this study, the basic properties of polyurethane waterproof sheet reinforced with non-woven fabric are investigated in order to understand field applicability.

  • PDF

Evaluation of the Absorbing Performance of Radar-absorbing Structure with Periodic Pattern after the Low-velocity Impact (주기패턴 레이더 흡수 구조의 저속충격 후 흡수 성능 평가)

  • Joon-Hyung, Shin;Byeong-Su, Kwak
    • Composites Research
    • /
    • v.35 no.6
    • /
    • pp.469-476
    • /
    • 2022
  • In this paper, the microwave absorbing characteristics after the impact of the radar-absorbing structure (RAS) consisting of periodic pattern sheet (PPS) and glass fiber-reinforced plastic (GFRP) were experimentally investigated. The fabricated RAS effectively absorbed the microwave in the X-band (8.2-12.4 GHz). In order to induce the damage to the RAS, a low-velocity impact test with various impact energy of 15, 40, and 60 J was conducted. Afterward, the impact damage was observed by using visual inspection, non-destructive test, and image processing method. Moreover, the absorbing performance of intact and damaged RAS was measured by the free-space measurement system. The experiment results revealed that the delamination damage from the impact energy of 15 J did not considerably affect the microwave absorbing performance of the RAS. However, fiber breakage and penetration damage with a relatively large damaged area were occuured when the impact energy was increased up to 40 J and 60 J, and these failures significantly degraded the microwave absorbing characteristics of the RAS.