• Title/Summary/Keyword: 섬유분포계수

Search Result 49, Processing Time 0.023 seconds

Finite thickness and tow phase shift effects on the mechanical behavior of plain weave textile composites (두께와 위상각의 변화가 평직복합재료 미세구조의 거동에 미치는 영향)

  • 우경식
    • Composites Research
    • /
    • v.13 no.1
    • /
    • pp.11-24
    • /
    • 2000
  • In this paper, finite thickness and tow phase effects on the mechanical behavior were studied numerically for plain weave textile composites. Unit cell analysis based on a superposition method was employed to simulate uniaxial tensile loading condition and macro-element post-processor was used to reduce computer resource requirement. The effective moduli and micro-stress distribution were calculated for finite thick plain weave composites with phase shifts. Single layer and infinitely thick configurations were also considered for comparison.

  • PDF

Interfacial shear strength test by a hemi-spherical microbond specimen of carbon fiber and epoxy resin (탄소섬유/에폭시의 반구형 미소접합 시험편에 대한 계면강도 평가)

  • Park, Joo-Eon;Gu, Ja-Uk;Kang, Soo-Keun;Choi, Nak-Sam
    • Composites Research
    • /
    • v.21 no.4
    • /
    • pp.15-21
    • /
    • 2008
  • Interfacial shear strength between epoxy and carbon fiber was analyzed utilizing a hemi-spherical microbond specimens adhered onto single carbon fiber. The hemi-spherical microbond specimen showed high regression coefficient and small standard deviation in the measurement of interfacial strength as compared with a droplet and an inverse hemi-spherical one. This seemed to be caused by the reduced meniscus effects and the reduced stress concentration In the region contacting with a pin-hole loading device. Finite element analysis showed that the stress distributions along the fiber/matrix interface in the hemi-spherical specimen had a stable shear stress distribution along the interface without any stress mode change. The experimental data was also different according to the kinds of loading device such as the microvise-tip and the pin-holed plate.

Evaluation of Surface Emission and Internal Movement of Water in Japanese Larch Lumber (낙엽송재 내 수분의 내부이동 및 표면방사 평가)

  • Han, Yeongjung;Eom, Changdeuk;Kim, Se Jong;Kang, Wook;Park, Joo Saeng;Park, Moon Jae;Yeo, Hwanmyeong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.35 no.4
    • /
    • pp.1-8
    • /
    • 2007
  • Japanese larch specimens with dimension of 2.5 (radial direction) ${\times}$ 2.5 (tangential direction) ${\times}$ 2.5 cm (longitudinal direction) were prepared to determine 3 different directional internal moisture movement coefficients and surface emission coefficients along the radial-, the tangential-, and the tangential-direction. 4 sides of each cubic specimen were wrapped with paraffin tape and rubber tape, leaving open the 2 opposite surfaces of interest, to provide one dimensional moisture movement during drying. The coefficients were determined at three different temperatures, 70, 50 and $30^{\circ}C$ and at two different relative humidities, 30 and 60%. Internal moisture movement coefficients inclusive of flow of free water and diffusion of bound water and water vapor were increased in the high temperature condition. The internal moisture movement coefficient in the longitudinal direction was about six times of those in transverse directions with radial value being 20% greater than the tangential. Surface emission coefficients were increased with temperature and decreased with surface moisture content. Using this results, moisture content (MC) profile and quantities of moisture evaporating in Japanese larch lumber could be predicted in dynamic drying situations.

A Study on the Strength Evaluation of Unidirectional Carbon Fiber Reinforced Plastics by Nondestructive Method (일방성(一方性) 복함재료(複合材料)의 파괴거동(破壞擧動) 및 강도평가(强度評價)에 관(關)한 연구(硏究))

  • Chang, H.K.;Lee, J.S.;Cho, K.S.;Lee, S.H.;Park, E.S.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.7 no.2
    • /
    • pp.42-47
    • /
    • 1988
  • The off-axis tensile strength of the unidirectional carbon fiber reinforced plastic and the residual strength of impact damaged CFRP were measured and compared with the stress wave factor (SWF) of the specimens. The SWF values were measured to be decreased with the strength reduction in both cases and found to be useful for the nondestructive strength evaluation of unidirectional CFRP. The failure behaviour of the unidirectional CFRP during off-axis tensile testing was also monitored by acoustic emission(AE) method. The AE energy release showed the characteristic feature depending on the off-axis angle and this result was analyzed to be caused by the difference of the expected failure mode depending on the off-axis angle. The failure mode of CFRP was found to be analyzed by investigation of the peak amplitude distribution of AE.

  • PDF

A Preliminary study of Biomechanical Behavior of High-Performance Polymer Post-Core System (고성능 폴리머 재질의 포스트-코어 시스템의 생역학적 거동에 대한 예비실험)

  • Lee, Ki-Sun;Kim, Jong-Eun;Kim, Jee-Hwan;Lee, Jeong-Yol;Shin, Sang-Wan
    • Journal of the Korean Academy of Esthetic Dentistry
    • /
    • v.27 no.2
    • /
    • pp.75-81
    • /
    • 2018
  • The aim of this study was to evaluate the biomechanical behavior and long-term safety of high performance polymer PEKK as an intraradicular dental post-core material through comparative finite element analysis (FEA) with other conventional post-core materials. A 3D FEA model of a maxillary central incisor was constructed. A cyclic loading force of 50 N was applied at an angle of $45^{\circ}$ to the longitudinal axis of the tooth at the palatal surface of the crown. For comparison with traditionally used post-core materials, three materials (gold, fiberglass, and PEKK) were simulated to determine their post-core properties. PEKK, with a lower elastic modulus than root dentin, showed comparably high failure resistance and a more favorable stress distribution than conventional post-core material. However, the PEKK post-core system showed a higher probability of debonding and crown failure under long-term cyclic loading than the metal or fiberglass post-core systems.

Prediction of Thermoelastic Constants of Unidirectional Porous Composites Using an Unmixing-Mixing Scheme (분리-혼합 기법을 이용한 일방향 다공성 복합재료의 열탄성 계수 예측)

  • Shin, Eui-Sup
    • Composites Research
    • /
    • v.25 no.2
    • /
    • pp.34-39
    • /
    • 2012
  • A thermo-poro-elastic constitutive model of unidirectionally fiber-reinforced composite materials is suggested by extending the unmixing-mixing scheme which is based upon composite micromechanics. The strain components of thermal expansion due to a temperature change, gas pressure in pores, and chemical shrinkage are included in the constitutive model. On purpose to verify the derived constitutive relations, the representative volume element of two-dimensional lamina subject to various loading conditions is analyzed by the finite element method. The overall stress and strain responses are obtained, and compared with the predicted values by the unmixing-mixing scheme. The numerical results show the usefulness of the proposed model to predict the thermoelastic behavior of porous composites.

Effect of Inorganic Fillers on the Dimensional Stability of Poly(ethylene naphthalate) Film as a Flexible Substrate (무기 필러가 유연기판용 폴리에틸렌나프탈레이트 필름 치수안정성에 미치는 영향)

  • Kim, Jongwha;Kim, Hongsuk;Kang, Ho-Jong
    • Polymer(Korea)
    • /
    • v.36 no.6
    • /
    • pp.733-738
    • /
    • 2012
  • The effect of glass bead and glass fiber on the enhancement of dimensional stability in poly(ethylene naphthalate) (PEN) flexible substrate for photovoltaic devices has been studied. It was found that the coefficient of thermal expansion (CTE) and the optical transmittance decreased with increasing inorganic filler content. In addition to filler contents, the size and size distribution of fillers are the other important factors to improve CTE and optical transmittance of PEN film. Our results showed that the optimum filler content was found to be about 5 wt% to enhance the dimensional stability of PEN by more than 50% with maintaining the optical transmittance over 85% for the flexible substrate.

Pushover Analysis of a 5-Story RC OMRF Considering Inelastic Shear Behavior of Beam-Column Joint (보-기둥 접합부 비탄성 전단거동을 고려한 5층 철근콘크리트 보통모멘트골조의 푸쉬오버해석)

  • Kang, Suk-Bong;Kim, Tae-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.5
    • /
    • pp.517-524
    • /
    • 2012
  • In this study, the effects of the inelastic shear behavior of beam-column joint and the vertical distribution of lateral load are evaluated considering higher modes on the response of RC OMRF using the pushover analysis. A structure used for the analysis was a 5-story structure located at site class SB and seismic design category C, which was designed in accordance with KBC2009. Bending moment-curvature relationship for beam and column was identified using fiber model. Also, bending moment-rotation relationship for beam-column joint was calculated using simple and unified joint shear behavior model and moment equilibrium relationship for the joint. The results of pushover analysis showed that, although the rigid beam-column joint overestimated the stiffness and strength of the structure, the inelastic shear behavior of beam-column joint could be neglected in the process of structural design since the average response modification factor satisfied the criteria of KBC2009 for RC OMRF independent to inelastic behavior of joint.

Quantitative Analyses of Cells using Photoshop after the H&E Staining of the Synovia of Osteoarthritis and Rheumatoid Arthritis Patients (H&E 염색 이미지의 포토샵 분석을 이용한 골관절염과 류마티스 관절염 활막 세포의 정량 분석)

  • Park, Jin-Ah;Kim, Keun-Cheol
    • Journal of Life Science
    • /
    • v.22 no.8
    • /
    • pp.1034-1040
    • /
    • 2012
  • Synovium is the soft tissue that lines the non-cartilaginous surfaces within joints. It has been reported that synovial cells are activated during the pathogenesis of rheumatoid arthritis. In this study, we quantitate and compare the cellular composition of synovia derived from individuals with non-inflammatory osteoarthritis (OA) and those with inflammatory rheumatoid arthritis (RA). Synovia from OA (n=8) and RA (n=5) patients were used for hematoxylin and eosin (H&E) staining. A light microscopic examination has shown that RA synovia were morphologically thickened and hypertrophied as compared to OA synovia. We also performed an immunohistochemistry (IHC) analysis to classify cell types in the synovia using CD68, CD90, or PGP9.5 markers. As a result, we obtained quantitative data regarding the cell populations, which are macrophages in the lining layer and FLSs in the subintimal layer of the synovium. Further Photoshop analyses of the H&E images could allow the counting of the number and layer of the cells in the synovium. The number and layers of the macrophage cells were increased in the lining layer of the RA synovia as compared to the OA synovia. FLS cells also were increased in the subintimal layer of RA synovia. Therefore, quantification of the H&E stained images via Photoshop is a possible analysis protocol for synovium study. This quantitation also supports the idea that the increases in cell number and cell activation are important processes for RA pathogenesis.

Mixed Mode Analysis using Two-step Extension Based VCCT in an Inclined Center Crack Repaired by Composite Patching (복합재료 팻칭에 의한 중앙경사균열에서 2단계 확장 가상균열닫힘법을 사용한 혼합모우드해석)

  • Ahn, Jae-Seok;Woo, Kwang-Sung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.1A
    • /
    • pp.11-18
    • /
    • 2012
  • This paper deals with the numerical determination of the stress intensity factors of cracked aluminum plates under the mixed mode of $K_I$ and $K_{II}$ in glass-epoxy fiber reinforced composites. For the stress intensity factors, two different models are reviewed such as VCCT and two-step extension method. The p-convergent partial layerwise model is adopted to determine the fracture parameters in terms of energy release rates and stress intensity factors. The p-convergent approach is based on the concept of subparametric element. In assumed displacement field, strain-displacement relations and 3-D constitutive equations of a layer are obtained by combination of 2-D and 1-D higher-order shape functions. In the elements, Lobatto shape functions and Gauss-Lobatto technique are employed to interpolate displacement fields and to implement numerical quadrature. Using the models and techniques considered, effects of composite laminate configuration according to inclined angles and adhesive properties on the performance of bonded composite patch are investigated. In addition to these, the out-of-plane bending effect has been investigated across the thickness of patch repaired laminate plates due to the change of neutral axis. The present model provides accuracy and simplicity in terms of stress intensity factors, stress distribution, number of degrees of freedom, and energy release rates as compared with previous works in literatures.