• Title/Summary/Keyword: 섬유복합체

Search Result 401, Processing Time 0.028 seconds

Evaluation of impact resistance of high performance fiber reinforced cementitious composites under high-speed projectile crash (고속 비상체 충돌에 대한 고성능 섬유보강 시멘트 복합체의 방호성능 평가)

  • Moon, Jae-Heum;Park, Jung-Jun;Park, Gi-Joon;Cho, Hyun-Woo;Kim, Sung-Wook;Lee, Jang-Hwa
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.7
    • /
    • pp.4950-4959
    • /
    • 2015
  • The importance of public infrastructures' protection against crash or blast loads has been emerging issue as structures are becoming bigger and population densities in downtown cities are growing up. However, there exists no sufficient study which considers the developments of protective building materials, that are essential for protective design and construction. To assess the protection performance and the applicability as protective materials of high performance fiber reinforced cementitious composites(HPFRCC), this study performed the impact tests with 40 mm gas-gun propelled projectile crash machine. From this study, it has observed that both high compressive strength of cement matrix and fiber reinforcement are beneficial for the improvement of impact resistance.

Evaluation of the Effect of Nickel Powder on the Piezoresistivity Behavior of Carbon-Fiber/Rubber Composites (탄소섬유/고무 복합재료의 압저항과 니켈입자의 영향)

  • Lim, Dong-Jin
    • Composites Research
    • /
    • v.34 no.6
    • /
    • pp.412-420
    • /
    • 2021
  • In this study, we measure the initial electrical conductivity of SCF/rubber specimens and SCF/rubber specimens with nickel particles respectively. The corresponding electrical conductivity with compressive strain on the specimens is also measured. Through this experiment, we observed the effects of the volume fraction of carbon fiber, nickel particles and external strain on the electrical conductivity. Experiments show that even a small difference in the volume fraction of SCF plays a major role in the change of the electrical conductivity and that the piezoresistivity increases due to fiber reorientation respond to external strain. In addition, the nickel particles contribute to improving the electrical conductivity in specimens with carbon fibers above the threshold volume fraction. It was confirmed that there is an effect of offsetting the increment in the piezoresistivity caused by the reorientation of carbon fibers according to external strain.

Effect of Fiber Volume Fractions on Flow and Uniaxial Tension Properties of 3D Printed SHCC (3D 프린팅용 SHCC의 흐름값과 1축 인장 특성에 미치는 섬유 혼입률의 영향)

  • Chang-Jin Hyun;Hyo-Jung Kim;Byung-Jae Lee;Yun-Yong Kim
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.3
    • /
    • pp.83-90
    • /
    • 2024
  • This study investigates the 3D printing characteristics of strain hardening cement composites (SHCC) reinforced by PVA fibers. Three SHCC mixtures with diverse fiber volume fractions (1.0% for F1.0 mixture, 1.5% for F1.5 mixture, and 1.8% for F1.8 mixture) were designed. Except for the F1.0 mixture, all mixtures met the necessary conditions for multiple micro-cracking, with higher fiber volume fractions more readily satisfying these conditions. The flow values of three SHCC mixtures were within the 3D printable range of 120~160 mm, exhibiting decreased flow values with increasing the fiber volume fractions. Observation of the printed SHCC surfaces indicated that the F1.0 mixture had a Level-3 (good) rating, while F1.5 and F1.8 were rated as Level-2 (average). Higher fiber volume fractions resulted in poorer surface quality, thus, further research needs to be performed for modulating SHCC mixture suitable for 3D printing. The uniaxial tension behavior showed that the F1.0 mixture failed at lower strain, whereas F1.5 and F1.8 exhibited higher strain performance with multiple micro-cracks occurring.

Fabrication of Carbon Fiber Reinforced Reaction Bonded SiC Composite Fabricated by a Molten Si Infiltration Method; I. The Effect of Carbon Fiber Coating Process (용융 Si 침윤법에 의해 제조된 반응소결 탄소 섬유강화 탄화규소 복합체 제조; I. 탄소 섬유 코팅 방법에 따른 영향)

  • Yun, Sung-Ho;Tan, Phung Nhut;Cho, Gyung-Sun;Cheong, Hun;Kim, Young-Do;Park, Sang-Whang
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.9
    • /
    • pp.531-536
    • /
    • 2008
  • Reaction bonded silicon carbide (RBSC) composite for heat-exchanger was fabricated by molten Si infiltration method. For enforcing fracture toughness to reaction bonded silicon carbide composite, the surface of carbon fiber has coating layer by SiC or pyro-carbon. For SiC layer coating, CVD method was used. And for carbon layer coating, the phenol resin was used. In the case of carbon layer coating, fracture toughness and fracture strength were enhancing to 4.4 $MPa{\cdot}m^{1/2}$ and 279 MPa.

Flexural Characteristics of High Performance Fiber Reinforced Cement Composites used in Hybrid Synthetic Fibers (하이브리드 합성섬유를 이용한 고인성 섬유보강 복합체의 휨특성)

  • Han Byung Chan;Jeon Esther;Park Wan-Shin;Lee Young-Seak;Hiroshi Fukuyama;Yun Hyun-Do
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.734-737
    • /
    • 2004
  • The synthetic fibers such as polypropylene(PP) and polyvilyl-alcohol(PVA) fiber are poised as a low cost alternative for reinforcement in structural applications. It has been reported that synthetic fiber in cement composites can control restrained tensile stresses and cracks and increase toughness, resistance to impact, corrosion, fatigue and durability. High performance fiber reinforced cementitious composite(HPFRCCs) shows ultra high ductile behavior in the hardened state, because of the fiber bridging properties. Therefore, a variety of experiments have being performed to access the performance of HPFRCCs recently. The research emphasis is on the flexural behavior of HPFRCCs made in synthetic fibers, and how this affects the composite property, and ultimately its strain-hardening performance. Three-point bending tests on HPFECCs are carried out. As the result of the bending tests, HPFRCCs showed high flexural strength and ductility. HPFRCCs made in PVA or Hybrid fiber were, also, superior to PP of singleness. On the other hand, effect of sand volume fraction on HPFRCCs made in PP was insignificant.

  • PDF

Flexural and Cracking Characteristics of Concrete Beams Exposed to Freeze-Thaw Cycles after Patch-Repaired with SHCC (SHCC로 단면 복구후 동결융해에 노출된 콘크리트 보의 휨 및 균열특성)

  • Yun, Hyun-Do;Kim, Sun-Woo;Jeon, Ester;Lee, Young-Oh;Jang, Kwang-Soo;Park, Whan-Shin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.21-22
    • /
    • 2009
  • This paper presents the results of an experimental study on flexural behavior and cracking process of concrete beams subjected to cycles of freezing and thawing after patch-repaired with strain-hardening cement composites (SHCCs). The SHCCs were reinforced with hybrid 0.75% PVA and 0.75% PE fibers. Experimental testing of concrete beams patch-repaired with SHCCs revealed that the SHCC patch-repair system without freeze thaw (FT) exposure showed average 3.31 times increased load carrying capacity and for beams exposed to 300 FT cycles, load carrying capacity increased up to 2.42 times. Cracking damage of SHCC patch-repaired beams mitigated compared to plain concrete beams but this trend decreased under FT exposure.

  • PDF

Acoustic Emission Characteristics of Notched Aluminum Plate Repaired with a Composite Patch (복합재 패치로 보수된 노치형 알루미늄 합금 평판의 음향방출 특성)

  • Yoon, Hyun-Sung;Choi, Nak-Sam
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.31 no.1
    • /
    • pp.53-61
    • /
    • 2011
  • Edge notched A16061-T6 aluminum was repaired with a GFRP composite patch as a function of the number of stacking, Damage progress of specimen for tension load has been monitored by acoustic emission(AE), AE energy rate, hit rate, amplitude, waveform and 1st peak frequency distribution were analyzed. Fracture processes were classified into Al cracking, Fiber breakage, Resin cracking and Delamination. Displacement of a specimen can be divided into Region I, II and ill according to acoustic emission characteristics. Region II where the patch itself was actually fractured was focused on to clarify the AE characteristics difference for the number of stacking.

Numerical Simulation and Verification of Morphing Composite Structure with Embedded SMA Wire Actuators (형상기억합금 선이 삽입된 가변 복합재 패널의 해석 및 실험)

  • Kong, Jung-Pyo;Jung, Beom-Seok;Li, Ningxue;Ahn, Sung-Hoon;Cho, Maeng-Hyo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2010.04a
    • /
    • pp.343-346
    • /
    • 2010
  • 형상기억합금이 삽입된 복합체는 힌지나 추가적 작동기 없이 그 자체로서 지능 구조의 역할을 할 수 있어 많은 분야에서 활발히 연구되고 있다. 본 논문에서는 형상기억합금(Shape Memory Alloy) 선이 삽입된 $\cap$자형 복합재를 제안하고, 형상기억합금과 모재가 정해진 경우의 곡률 변화에 영향을 주는 주요 설계 변수를 복합재의 너비, 두께, 형상기억합금의 편심률을 설계변수로 가정하고 유한요소 해석과 패널 제작 및 실험을 통해 검증한다. 먼저 라고다스(Lagoudas)모델을 형상기억합금의 구성방정식으로 이용한 유한요소해석모델을 구성하여 수치해석을 수행하고, 11 종류의 형상기억합금 선이 삽입된 유리섬유강화복합재(Glass Fiber Reinforced Plastic) 패널을 제작하여 열하중에 따른 곡률변화를 관찰한다. 해석결과와 실험결과의 비교를 통해 해석모델의 타당성을 검증하며, 해석을 통해 각 설계 변수들의 곡률변화에 대한 영향을 파악한다.

  • PDF

Investigation on the Applicability of Structures by Evaluating the Static Properties and the Impact Resistance Performance of Amorphous Metallic Fiber Reinforced Cement Composites (비정질 강섬유보강 시멘트복합체의 정역학특성 및 내충격성능 평가를 통한 구조물 적용 가능성 검토)

  • Kang, Il-Soo;Kim, Gyu-Yong;Lee, Bo-Kyeong;Lee, Sang-Kyu;Son, Min-Jae;Nam, Jeong-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.11a
    • /
    • pp.79-80
    • /
    • 2017
  • This study examined the effect that the amorphous metallic fibers had on the static mechanical properties and the impact resistance of cement composites to those of hooked steel fibers. The hooked steel fiber exhibited pull-out from the matrix after the peak flexural stress was attained, while the amorphous metallic fiber was not pulled out from the matrix, but was instead cut off. In terms of impact resistance, the amorphous metallic fiber reinforced cement composite was found to be more effective at resisting cracking than the hooked steel fiber reinforced cement composite. Therefore, amorphous metallic fiber should be used in fiber reinforced cement composite materials, and for structural materials, and for protection panels.

  • PDF

Evaluation of Impact Resistance of Hybrid Fiber Reinforced Cementitious Composites Subjected to Thermal Stress (열응력을 받은 하이브리드 섬유보강 시멘트 복합체의 내충격성능 평가)

  • Han, Seung-Hyeon;Kim, Gyu-Yong;Lee, Yae-Chan;Eu, Ha-Min;Park, Jun-Young;Nam, Jung-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.145-146
    • /
    • 2023
  • In this study, the effect of hybrid fiber reinforcement on the residual strength and impact resistance of high-strength cementitious composites exposed to high temperatures was investigated. A cementitious composites was manufactured in which 0.15 vol% of polypropylene fiber (PP) and 1.0 vol% of smooth steel fiber (SSF) were double-mixed, and a residual strength test was conducted while thermal stress was applied by heating test, and then a high-velocity impact test was performed. In the case of general cementitious composites, the rear surface is damaged due to explosion and low tensile strength during high temperature or impact, while hybrid fiber reinforced cementitious composites can repeatedly absorb and distribute stress until multiple fibers are damaged to suppress the propagation of impact and resistance to explosion. Therefore, this study analyzed the residual strength of cementitious composites exposed to high temperatures depending on whether hybrid fibers were mixed or not, and collected research data on fracture behavior through high-speed impact tests to evaluate impact resistance and mechanical properties.

  • PDF