• Title/Summary/Keyword: 섬유방향

Search Result 661, Processing Time 0.025 seconds

Resonance Frequency Analysis of A Baseball Bat by Impact Angle (가진 각도에 따른 야구배트의 공진주파수 분석)

  • Park, Sun-Hyang;Chung, Woo-Yang;Jung, Hwan-Hee;Lee, Sang-Joon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.6
    • /
    • pp.777-783
    • /
    • 2015
  • Wood is an anisotropic material that shows the changes in hardness, quality and dimensions depending on the types of cells on three cross sections, size, array and so on. It can also be used in different ways according to its use, which requires a meticulous research, in order to maximize the utilization by understanding the nature and use; and by clarifying the theory and technologies. The research on relationship among wood's physical properties, density, and elasticity of modulus have been studied in Korea and abroad, but those studies were based on correlation gained through standardized specimen. Rather, the study on complete product is rare. Moreover, the previous reports are mostly concentrating on vibration mode and batting, though the wood's physical properties as a material have not been in the main focus. Therefore, this study will carried out for analyzing MOE through figuring material property out and comparing frequency adapting to the Canadian HardMaple bat. For comparison of material properties, we studied the annual ring and density of the bat; calculated the MOE with resonance frequency and formula (ASTM C1259); and verified the repulsive force of this material. As a result, the relevance of the resonance frequency and annual ring is weak, and in comparison in the grain direction in wood, the MOE value is higher when the grain direction in wood is excited horizontally than when is excited vertically, because the material is repulsive when grain direction is horizontal.

New FTIR-ATR method (Peak combination method) for 3-dimensional orientation of PTT polymers (새로운 FTIR-ATR 방법(Peak combination method)을 이용한 PTT 분자사슬의 3차원 배향 분석)

  • 박기호;이한섭
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.04a
    • /
    • pp.339-340
    • /
    • 2003
  • 섬유 고분자 물질의 물리적 성질은 물질의 화학적 구조뿐만 아니라 분자의 배향과 결정화도와 같은 내부 구조에 의해 크게 영향을 받는다. 적외선 분광법은 특정 segment의 배향과 conformation, 결정화도와 같은 내부 구조의 변화를 선택적으로 관찰할 수 있는 장점으로 인하여 섬유 고분자 물질의 연구에 널리 사용되고 있다. 특히 적외선 분광법의 한 방법인 ATR (Attenuated Total Reflection) 방법은 투과에 의한 방법으로는 관찰이 불가능한 fiber, fabric, coating, thick film과 같은 형태의 시료를 관찰 할 수 있는 특성이 있으며 무엇보다 가장 큰 장점은 시료의 Machine Direction (MD), Transverse Direction(TD), Normal Direction (ND)의 세 방향으로 필름의 3차원적 배향 분석이 가능하다는 점이다.$^{1)}$ (중략)

  • PDF

Effect of Moisture Absorption on the Compressive and the Bending Residual Strength in Fiber-Reinforced Polymeric Composites (흡습효과가 섬유강화 고분자 복합재료의 압축 ${\cdot}$ 굽힘 잔류강도에 미치는 영향)

  • Kim, Hyuk;Han, Gil-Young;Lee, Dong-Gi;Kim, E-Gon;Kim, Ki-Sung
    • Journal of Ocean Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.133-140
    • /
    • 1995
  • This paper deals with the residual strength characteristics of composite materials under the environment of high temperature and humidity. Two types of GFRP, one with unidirection and randomly oriented, are used to investigate the features of moisture absorption and the residual strength. The results show that, when exposed longterms in high temperature and humidity, the randomly oriented composites is more stable than the unidirection one.

  • PDF

Trend in Digital Clothing Technology (디지털 의류 기술 개발 동향)

  • Kim, J.E.;Jeong, H.T.;Cho, I.Y.
    • Electronics and Telecommunications Trends
    • /
    • v.24 no.5
    • /
    • pp.20-29
    • /
    • 2009
  • 디지털 의류는 디지털 기술이 의류에 자연스럽게 융합되면서 옷을 입은 사람뿐만 아니라 외부의 디지털 기기와도 자유로운 소통이 가능한 의류이다. 1990년 후반부터 유럽과 미국에서는 섬유기술에 IT 기술을 융합하는 연구가 계속되고 있으며, 직물부품 및 직물회로를 구현하여 의류에 적용한 바 있다. 초기 디지털 의류는 군복과 같은 특수용도로 개발되었으나 요즘에는 MP3 플레이어 내장 의류, 색깔이 변하는 의류, 헬스케어 의류 등 일상생활용도의 의류가 개발되는 추세이다. 디지털 의류는 신소재 산업, 센서 산업 등 기술 집약 산업의 활성화는 물론, 기존 전통 산업에 IT 기술을 접목함으로써 섬유, 패션, 의류산업의 확장과 활성화에 큰 역할을 할 것으로 전망된다. 앞으로 우리나라가 디지털 의류 시장을 선도하기 위해서는 섬유 IT 및 의류 IT융합 핵심기술의 확보가 시급하다. 본 고에서는 섬유 IT 융합분야의 이해를 높이고자 디지털 의류 기술 개발의 동향을 살펴보고 향후 기술발전 방향을 전망해 보고자 한다.

The Computation of Stress Intensity Factors in Fiberreinforced Composites using a Contour Integral Method (경로적분법에 의한 섬유강화복합재의 응력확대계수 계산)

  • 김진우;장흥석
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.9 no.1
    • /
    • pp.109-118
    • /
    • 1985
  • 특이응력해석을 위한 일반화된 가역상반일 경계분식이 섬유강화복합재를 모형화한 직교 이방성 크랙평판의 수치해를 위하여 발전시켰다. 이 적분방정식은 평판경계에서의 탄성변위와 트랙션의 변수로 구성된 경계분식의 형태로 하중이 없다는 두 크랙면의 경계조건과 유한의 탄성변형에너지 의 개념에서 경계적 분식에 필요한 특성해를 규정하고 대응되는 보조해를 계산하였다. 직교이방 도를 달리한 중앙크랙평판의 응력확대계수를 계산하여 기존해와 비교하였다. 또한 대칭모우드 I 형의 양측크랙평판 및 복합모우드형 편측크랙 일단고정 평판의 응력확대계수가 임의의 섬유방향 각에 따라서 계산되었다.

PVA Fiber Incorporation Effect According to Light Transmission Direction of LEFC (빛 투과 방향에 따른 LEFC의 PVA섬유 혼입 효과)

  • Seo, Seung-Hoon;Kim, Tae-Wan;Kang, Young-Un;Jeon, Seung-Heon;Oh, Sang-Kun;Kim, Byoung-Il
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.05a
    • /
    • pp.17-18
    • /
    • 2018
  • With the technological advancement of the construction industry, construction materials with future direction appeared. In Korea, LEFC(Light Emotion Friendly Concrete) has been developed and studied, which has improved labor productivity and economic efficiency over semi-transparent concrete by introducing transparent plastic rods into concrete matrix. However, there is a problem in that the bending performance is lowered according to the insertion of the rod and the bending performance is different according to the light transmission direction. In this study, the incorporation of PVA fibers in the direction of light transmission was increased and the change of flexural performance according to the interval of light transmission was examined.

  • PDF

Thermal Shock and Erosion Properties of 4D Carbon/Carbon Composties (4방향 탄소/탄소 복합재의 열충격 및 삭마 특성)

  • Hong, Myeong-Ho;O, In-Seok;Choe, Don-Muk;Ju, Hyeok-Jong;Park, In-Seo
    • Korean Journal of Materials Research
    • /
    • v.5 no.5
    • /
    • pp.611-619
    • /
    • 1995
  • PAN계 탄소섬유와 페놀수지를 이용하여 rod를 인발성형 한 후, 다른 섬유분율을 갖는 두종류의 hexagonal type 4D 프리폼을 제작하였다. 석탄계 핏치를 가압함침 탄화공정을 통하여 함침한 후 탄화와 고온열처리를 하였다. 이와 같은 공정을 반복하여 고밀도화된 4D CRFC를 제조하였다. 열충결 시험 후 새로운 크랙이 생성되었을 뿐만 아니라 기존의 크랙이 확장되었으며 이와 같은 크랙들은 공기와의 접촉면을 제공하여 중량감소를 보였다. 공기 산화 저항성을 고온열처리 공정을 거친 것이 약 20% 우수하게 나타났다. 4D CFRC의 밀도와 섬유의 분율이 높을 수록 삭마 저항성이 커지고, 삭마량은 시간에 따라 선형적으로 증가하였으며 type II가 type I보다 삭마저항성이 우수하였다. 삭마 메카니즘을 관찰한 결과 1차적으 기질의탈리가 먼저 일어난 다음 섬유가 삭마되었다.

  • PDF

A Study on Applicability of Tensile Constitutive Model of Steel Fiber Reinforced Concrete in Model Code 2010 (Model Code 2010에 제시된 강섬유 보강 콘크리트의 인장 구성모델 적용성 고찰)

  • Yeo, Dong-Jin;Kang, Duk-Man;Lee, Myung-Seok;Moon, Do-Young
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.5
    • /
    • pp.581-592
    • /
    • 2016
  • Tensile constitutive stress-strain model of steel fiber reinforced concrete (SFRC) in fib MC2010 was investigated. In order to model tensile behavior of SFRC, three point loading flexural tests were conducted on notched small beams according to BE-EN-14651. Design parameters for the constitutive model were determined from the flexural tests. Flexural test and finite element analysis were conducted on large SFRC beam without steel reinforcements and compared with each other. In addition, parametric study on the effect of compressive and tensile model, and characteristic length on flexural behavior of the SFRC beam was conducted also. In results, pre-peak load-displacement curves from the FE analysis was close to experimental curves but significant difference was shown in post-peak behavior. The reason of the difference is originated from the fact that the fiber distribution and orientation were not being properly considered in the MC2010 model. This study shows that modification and detail explanations on the orientation factor K in MC2010 might require to better reproduce the behaviour of large scale SFRC beams.

Static Bending Strength Performances of Hybrid Laminated Woods Composed of Wood-Wood Based Boards (목재와 목질보드 복합적층재의 휨강도성능)

  • Park, Han-Min;Moon, Sung-Jae;Choi, Yoon-Eun;Park, Jung-Hwan;Byeon, Hee-Seop
    • Journal of the Korean Wood Science and Technology
    • /
    • v.37 no.6
    • /
    • pp.546-555
    • /
    • 2009
  • To study an effective use of woods, three-ply hybrid laminated woods instead of crosslaminated woods which are composed of spruce in the face and three kinds of wood-based boards (MDF, PB, OSB) in the core were manufactured, and the effect of constitution elements for the core laminae on bending strength performances was investigated. Bending modulus of elasticity (MOE) of hybrid laminated woods had the highest values for the hybrid laminated wood types arranging OSB laminae in the core, and had the lowest values for those arranging MDF laminae in the core. These values were higher than those of various cross-laminated woods. The estimated bending MOEs of the hybrid laminated woods which were composed of perpendicular-direction lamina of spruce in the faces were similar to their measured values, regardless of wood-based boards in the core. However, those of the hybrid laminated woods which were composed of parallel-direction lamina of spruce in the faces had much higher values than those of their measured values, and it was necessary to revise the measured values. Bending modulus of rupture (MOR) of the hybird laminated woods had the highest value for those arranging OSB laminae in the core, and had the lowest values for those arranging PB laminae in the core unlike the bending MOE. By hybrid laminating, the anisotropy of bending strength performances was markedly decreased, and the differences of strength performances among wood-based boards were also considerably decreased.

Fatigue Behavior of Composites with different Fiber Orientation (섬유 방향에 따른 복합재 피로특성에 관한 연구)

  • Kang, Tae-Young;An, Hyo-Seong;Chun, Heoung-Jae;Park, Jong-Chan
    • Composites Research
    • /
    • v.34 no.2
    • /
    • pp.77-81
    • /
    • 2021
  • Due to the high specific strength and stiffness of the composite materials, the composite materials have been extensively used in various industries. In particular, carbon fiber reinforced composites are widely used in many mechanical structures. In addition, since carbon fiber reinforced composites have anisotropic properties, to understand the fatigue behavior of composites with different fiber orientation is very important for the efficient structural design. Therefore, in this paper, the effect fiber orientation on the fatigue life of composite materials was experimentally evaluated. For this purpose, tensile and fatigue tests were performed on the off-axis specimens (0°, 10°, 30°, 45°, 60°, 90°) of the composite materials. As a result of the fatigue tests, the fatigue strength of the composites decreased significantly as the fatigue strength slightly deviated from 0 degrees. On the other hand, the more deviated, the less decreased. This is because the role of supporting the load of fibers decreased as the stacking angle increased. In addition, the fatigue behavior was analyzed by introducing a fatigue strength ratio (Ψ) that eliminates the fiber orientation dependence of the off-axis fatigue behaviors on the unidirectional composites. The off-axis fatigue S-N lines can be reduced to a single line regardless of the fiber orientation by using the fatigue strength ratio (Ψ). Using the fatigue Ψ-N line, it is possible to extract back to any off-axis fatigue S-N lines of the composites with different fiber orientations.