• Title/Summary/Keyword: 섬유물성

Search Result 977, Processing Time 0.029 seconds

GF/PC Composite Filament Design & Optimization of 3D Printing Process and Structure for Manufacturing 3D Printed Electric Vehicle Battery Module Cover (전기자동차 배터리 모듈 커버의 3D 프린팅 제작을 위한 GF/PC 복합소재 필라멘트 설계와 3D 프린팅 공정 및 구조 최적화)

  • Yoo, Jeong-Wook;Lee, Jin-Woo;Kim, Seung-Hyun;Kim, Youn-Chul;Suhr, Jong-Hwan
    • Composites Research
    • /
    • v.34 no.4
    • /
    • pp.241-248
    • /
    • 2021
  • As the electric vehicle market grows, there is an issue of light weight vehicles to increase battery efficiency. Therefore, it is going to replace the battery module cover that protects the battery module of electric vehicles with high strength/high heat-resistant polymer composite material which has lighter weight from existing aluminum materials. It also aims to respond to the early electric vehicle market where technology changes quickly by combining 3D printing technology that is advantageous for small production of multiple varieties without restrictions on complex shapes. Based on the composite material mechanics, the critical length of glass fibers in short glass fiber (GF)/polycarbonate (PC) composite materials manufactured through extruder was derived as 453.87 ㎛, and the side feeding method was adopted to improve the residual fiber length from 365.87 ㎛ and to increase a dispersibility. Thus, the optimal properties of tensile strength 135 MPa and Young's modulus 7.8 MPa were implemented as GF/PC composite materials containing 30 wt% of GF. In addition, the filament extrusion conditions (temperature, extrusion speed) were optimized to meet the commercial filament specification of 1.75 mm thickness and 0.05 mm standard deviation. Through manufactured filaments, 3D printing process conditions (temperature, printing speed) were optimized by multi-optimization that minimize porosity, maximize tensile strength, and printing speed to increase the productivity. Through this procedure, tensile strength and elastic modulus were improved 11%, 56% respectively. Also, by post-processing, tensile strength and Young's modulus were improved 5%, 18% respectively. Lastly, using the FEA (finite element analysis) technique, the structure of the battery module cover was optimized to meet the mechanical shock test criteria of the electric vehicle battery module cover (ISO-12405), and it is satisfied the battery cover mechanical shock test while achieving 37% lighter weight compared to aluminum battery module cover. Based on this research, it is expected that 3D printing technology of polymer composite materials can be used in various fields in the future.

Quality characteristics of Halal chicken sausages prepared with biji powder (비지 분말 첨가 Halal 계육 소시지의 조직감 및 항산화특성)

  • Moon, Tae-Hwi;Park, Sun-Min;Yim, Sun-goo;You, Ye-Lim;Han, Jung-Ah
    • Korean Journal of Food Science and Technology
    • /
    • v.54 no.3
    • /
    • pp.334-342
    • /
    • 2022
  • To meet the needs of Muslim consumers, sausages were prepared using Halal-certified chicken thighs and different amounts of biji powder (0, 20, 30, 40, and 50%), and then the properties of the sausages were compared. As the biji powder levels increased, both the moisture content and the pH of the sausages significantly decreased, whereas their fiber content increased. As the biji powder levels increased, the free radical scavenging effect (DPPH, ABTS) and water holding capacity also increased, and the textural properties also improved. When Muslim consumers evaluated the sensory attributes of the sausages prepared in this experiment and those currently on the market, the ones prepared in this experiment were preferred over the market products. Based on the above results, chicken sausage for Muslim consumers could be successfully produced, and their overall quality and antioxidant effects could be improved by the addition of biji powder (up to 30%).

Preparation and Characterization of White Bread with Sweet Persimmon (단감을 첨가한 식빵의 제조 및 특성)

  • Oh, Won-Gyeong;Kim, Ju-Hee;Lee, Seung-Cheol
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.40 no.2
    • /
    • pp.253-258
    • /
    • 2011
  • To increase utilization of Korean sweet persimmon, white breads containing sweet persimmon were prepared and those characterizations were evaluated. WB (white bread without persimmon), FPB (white bread containing 30% (w/w) persimmon flesh), and WPB (white bread containing 30% (w/w) whole persimmon) were prepared by straight dough method. Specific volumes of WB, FPB, and WPB were 3.51, 2.99 and 3.21 $cm^3$/g, respectively. Loss of bread of WB, FPB, and WPB were 9.81, 7.78, and 8.86%. With addition of sweet persimmon in bread, the lightness (L) was decreased, and the redness (a) and the yellowness (b) were increased. DPPH radical scavenging activity, one of antioxidant activity, of WB, FPB, WPB at concentration of 10 mg/mL was $12.39{\pm}0.135$, $14.57{\pm}0.01$, and $19.57{\pm}0.44%$, respectively. Total phenolic contents of WB, FPB and WPB were $177.05{\pm}5.52$, $185.26{\pm}0.79$, and $216.24{\pm}5.47$ mg GAE/g. Hardness of WB were 175.33 Dyne/$cm^3$, and the value was decreased in FPB and WPB. In sensory test, FPB acquired relatively high points in texture, flavor, taste, and overall acceptance.

Evaluating The Water Resistance of Wood Adhesives Formulated with Chicken Feather Produced from Poultry Industry (도계부산물인 닭털을 이용한 목재접착제의 내수성 평가)

  • Park, Dae-Hak;Yang, In;Choi, Won-Sil;Oh, Sei Chang;Ahn, Dong-uk;Han, Gyu-Seong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.1
    • /
    • pp.126-138
    • /
    • 2017
  • This study was conducted to investigate the potential of chicken feather (CF), which is a by-product in poultry industry, as a raw material of wood adhesives. For the purpose, adhesive resins were formulated with NaOH- and $H_2SO_4$-hydrolyzed CF as well as crosslinkers, and then the properties and water resistance of the adhesive resins against hot water were measured. CF was made of mainly keratin-type protein, and no or very low content of heavy metals was detected. Hydrolysis rate of CF increased as NaOH concentration in hydrolysis solutions increased. However, in order to minimize the loss of adhesive property of protein itself by the severe hydrolysis of CF and to seek its proper hydrolysis conditions, NaOH concentrations in hydrolysis solution determined to adjust to 5%, 7.5% and 10%. In the NaOH-hydrolyzed CF, $H_2SO_4$-hydrolyzed CF as a hardener and crosslinker were added to formulate CF-based adhesive resins. Solid content of the resins ranged from 28.3% to 44.8% depending on hydrolysis conditions and type of crosslinker. Viscosity of the resins at $25^{\circ}C$ was very high. However, when the temperature of the resins was increased to $50^{\circ}C$, the viscosity decreased greatly and thus the resins could be applied as a sprayable resin. Retention rate measured to evaluate the water resistance of adhesive resins was the highest in the cured resin formulated with 5% NaOH-hydrolyzed CF and 5% $H_2SO_4$-hydrolyzed CF of 10% based on the solid weight as a hardener. Retention rate depending on crosslinkers added into adhesive resins was the highest phenol-formaldehyde (PF) followed by melamine-urea-formaldehyde (MUF) and formalin. The retention rate of CF-based adhesives formulated with 5% NaOH-hydrolyzed CF, PF and $H_2SO_4$-hydrolyzed CF of 10% and over did not differ statistically from that of commercial MUF resins. All of CF-based adhesives formulated with PF as a crosslinker and one with 5% NaOH-hydrolyzed CF of 55%, 5% $H_2SO_4$-hydrolyzed CF of 15%, and MUF of 30% on the basis of solid weight could be substituted for commercial urea-formaldehyde resins, From the results, CF can be used as a raw material of wood adhesives if hydrolyzed in proper conditions.

Controlling of Molecular Weight and Degree of Deacetylation of Chitosan and Its Characteristics in Film Formation (키토산 분자량과 탈아세틸화도 조절 및 이에 따른 필름 특성)

  • Hwang, Kwon-T.;Park, Hyun-J.;Jung, Soon-T.;Ham, Kyung-S.;Yoo, Yong-K.;Cho, Gun-S.
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.5 no.1
    • /
    • pp.47-55
    • /
    • 1999
  • Applications of chitosan are related to molecular weight and degree of deacetylation(DOD) of chitosan completely. The molecular weight and DOD were greatly affected by the concentration of solution time and temperature. The degree of demineralization was not significantly different at $50^{\circ}C\;and\;70^{\circ}C$ after 30 minutes. Deproteinization decreased as process time increased. The nitrogen content was reached to 6.92% after 90 minute at $80^{\circ}C$, which is similar to theoretical nitrogen content of chitin. The DOD was 82.84% after 2 hours reaction and increased as the reaction time increased in the process. Viscosity and molecular weight are increased as recycling number of concentrated NaOH solution increased. Chemical, biological and physical properties of chitosan depend on the DOD and molecular size of the molecule. Tensile strength of the films from acetic acid solutions was between $28.9{\sim}33.6$ MPa and was generally higher than that of the films from lactic acid. Elongation of the films from lactic acid was between $97.0{\sim}109.7%$ and was generally higher than that of the films from the acetic acid. Water vapor permeability of the films prepared from lcetic acid solutions was between $1.9{\sim}2.3ng{\cdot}m/m^2{\cdot}s{\cdot}Pa$ and was generally higher than that of the films from the acetic acid.

  • PDF

Effect of Partial Freezing as a Means of Keeping Freshness II. Changes in Freshness and Gel Forming Ability of Conger Eel and Yellowtail during Storage by Partial Freezing (Partial Freezing에 의한 어육의 선도유지 효과에 대하여 2. Partial Freezing에 의한 붕장어 및 방어의 선도 및 어묵형성능의 변화)

  • LEE Yong-Woo;PARK Yeung-Ho;AHN Cheol-Woo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.19 no.1
    • /
    • pp.27-35
    • /
    • 1986
  • In succession to the previous paper, the present study was directed to investigate the effect of keeping freshness of conger eel (Astroconger myriaster) and yellowtail (Seriola quinqueradiata) by partial freezing, and the changes in the physical properties of fish meat paste product prepared with the muscle of conger eel during storage were also examined. The results obtained are summarized as follows: The period of keeping freshness (days in which k value reaches $20\%$) of conger eel and yellowtail by partial freezing was 10 days and 6 days, respectively. VBN content in the conger eel muscle showed 39.5 mg/100g by icing for 15 days, and did not show a great change by partial freezing and freezing, while that of yellowtail muscle reached at 32 mg/100g by icing, 20 mg/100g by partial freezing and 18 mg/100g by freezing for 15 days. The lipids extracted from the muscles of both fishes by icing were remarkably oxidized than those by partial freezing. The myofibrillar protein in the conger eel muscle during storage for 9 days decreased $3\%,\;10%\;and\;11\%$ by icing, partial freezing and freezing, respectively, and that of yellowtail muscle did $16\%,\;10%\;and\;4\%$ by icing, partial freezing and freezing, respectively. On the other hand, the alkali-soluble protein in both fishes increased with storage time. Gel strength of fish meat paste product prepared with the muscle of conger eel decreased to $35\%$ by icing, $74\%$ by partial freezing and $76\%$ by freezing for 10 days compared to control, and the expressible water increased 1.6 times, 1.2 times and 1.1 times by icing, partial freezing and freezing, respectively, as much as that of control product.

  • PDF

Treatment of Animal Wastewater Using Woodchip Trickling Filter System and Physical and Microbial Characteristics of Wood Chip Media (목편살수여상조를 이용한 축산뇨오수 처리와 목편여재의 물성 및 부착미생물 특성)

  • Ryoo, Jong-Won
    • Journal of Animal Environmental Science
    • /
    • v.17 no.2
    • /
    • pp.71-80
    • /
    • 2011
  • Trickling filter has been extensively studied for the domestic wastewater treatment especially for the small scale plants in rural area. The purpose of this research is to survey the physical and microbial characteristics of wood chip media and the removal efficiency of animal wastewater using wood chip trickling filter system. The trickling filtration system comprises a filtration bed packed with wood chip media having a particle dia. of 5~7cm. The method comprises natural air from the bottom of the bed. The system also comprises a control mechanism including a time a constant discharge pump for controlling supply of the wastewater into the bed. The following conclusions were obtained from the results of this research. 1. The specific surface area of wood chip was 0.4123 $m^2$/g, pore volume was 0.0947 $cm^3$/g, density was 0.49 g/$cm^3$. It has forms of parallelogram and oblong which have numerous small pore space. This wood chip has been good condition for microorganism's habitat, having very larger specific surface area by complex the three dimension structure of cellulose at wood's major ingredients. 2. The total counts of in attached aerobic microbes were ranged from $10^6$ to $10^8$ CFU/g, and anaerobes microbial numbers were from $10^4$ to $10^7$. The aerobic microbial numbers appeared to be much more than those of anaerobic microbial numbers. 3. The average efficiency of $BOD_5$ and CODcr were 74.5% and 51.5%, respectively. The removal efficiency of T-N and T-P were 61.4%, 56.2%, respectively. But SS removal levels remain 19.3%.