• Title/Summary/Keyword: 섬유강화 복합재

Search Result 255, Processing Time 0.023 seconds

Correlation between Probe Frequency and Echo-Pulse Velocity for Ultrasonic Testing of a Fiber-Reinforced Plastic Hull Plate (복합소재 선체 외판의 초음파 탐상을 위한 탐촉자 주파수와 수신기 음향 속력의 상관관계)

  • Lee, Sang-gyu;Han, Zhiqiang;Lee, Chang-woo;Oh, Daekyun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.2
    • /
    • pp.219-226
    • /
    • 2020
  • Nondestructive testing is one of the most commonly used quality inspection methods for evaluating ship structures. However, accurate evaluation is dif icult because various composite materials, such as reinforcements, resin, and fiber-reinforced plastics (FRPs), are used in hulls, and manufacturing quality differences are likely to exist owing to the fabrication environment and the skill level of workers. This possibility is especially true for FRP ships because they are significantly thicker than other structures, such as automobiles and aircraft, and are mainly manufactured using the hand lay-up method. Because the density of a material is a critical condition for ultrasonic inspection, in this study, a hull plate was selected from a vessel manufactured using e-glass fiber, which is widely used in the manufacture of FRP vessels with the weight fraction of the glass content generally considered. The most suitable ultrasonic testing conditions for the glass FRP hull plate were investigated using a pulse-echo ultrasonic gauge. A-scans were performed with three probes (1.00, 2.25, and 5.00 MHz), and the results were compared with those of the hull plate thickness measured using a Vernier caliper. It was found that when the probe frequency was higher, the eco-pulse velocity of the receiver had to be lowered to obtain accurate measurement results, whereas fewer errors occurred at a relatively low probe frequency.

The study on the manufacturing intermediary materials for the carbon nanofiber reinforced Cu matrix noncomposite (일방향 탄소나노섬유 강화 Cu 기지 나노복합재료용 중간재 제조에 관한 연구)

  • 백영민;이상관;엄문광
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.10a
    • /
    • pp.46-49
    • /
    • 2003
  • Cu have been widely used as signal transmission materials for electrical electronic components owing to its high electrical conductivity. However, it's size have been limited to small ones due to its poor mechanical properties, Until now, strengthening of the copper at toy was obtained either by the solid solution and precipitation hardening by adding alloy elements or the work hardening by deformation process. Adding the at toy elements lead to reduction of electrical conductivity. In this aspect, if carbon nanofiber is used as reinforcement which have outstanding mechanical strength and electric conductivity, it is possible to develope Cu matrix nanocomposite having almost no loss of electric conductivity. It is expected to be innovative in electric conduct ing material market. The unidirectional alignment of carbon nanofiber is the most challenging task developing the copper matrix composites of high strength and electric conductivity In this study, the unidirectional alignment of carbon nanofibers which is used reinforced material are controlled by drawing process in order to manufacture the intermediary materials for the carbon nanofiber reinforced Cu matrix nanocomposite and align mechanism as well as optimized drawing process parameters are verified via experiments and numerical analysis. The materials used in this study were pure copper and the nanofibers of 150nm in diameter and of $10~20\mu\textrm{m}$ In length. The materials have been tested and the tensile strength was 75MPa with the elongation of 44% for the copper it is assumed that carbon nanofiber behave like porous elasto-plastic materials. Compaction test was conducted to obtain constitutive properties of carbon nanofiber. Optimal parameter for drawing process was obtained by experiments and numerical analysis considering the various drawing angles, reduction areas, friction coefficient, etc Lower reduction areas provides the less rupture of cu tube is not iced during the drawing process. Optimal die angle was between 5 degree and 12 degree. Relative density of carbon nanofiber embedded in the copper tube is higher as drawing diameter decrease and compressive residual stress is occurred in the copper tube. Carbon nanofibers are moved to the reverse drawing direct ion via shear force caused by deformation of the copper tube and alined to the drawing direction.

  • PDF

Design and Structural Safety Evaluation of 1MW Class Tidal Current Turbine Blade applied Composite Materials (복합재료를 적용한 1MW급 조류 발전 터빈 블레이드의 설계와 구조 안전성 평가)

  • Haechang Jeong;Min-seon Choi;Changjo Yang
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.7
    • /
    • pp.1222-1230
    • /
    • 2022
  • The rotor blade is an important component of a tidal stream turbine and is affected by a large thrust force and load due to the high density of seawater. Therefore, the performance must be secured through the geometrical and structural design of the blade and the blade structural safety to which the composite material is applied. In this study, a 1 MW class large turbine blade was designed using the blade element momentum (BEM) theory. GFRP is a fiber-reinforced plastic used for turbine blade materials. A sandwich structure was applied with CFRP to lay-up the blade cross-section. In addition, to evaluate structural safety according to flow variations, static load analysis within the linear elasticity range was performed using the fluid-structure interactive (FSI) method. Structural safety was evaluated by analyzing tip deflection, strain, and failure index of the blade due to bending moment. As a result, Model-B was able to reduce blade tip deflection and weight. In addition, safety could be secured by indicating that the failure index, inverse reserve factor (IRF), was 1 or less in all load ranges excluding 3.0*Vr of Model-A. In the future, structural safety will be evaluated by applying various failure theories and redesigning the laminated pattern as well as the change of blade material.

Ground Test & Evaluation of Conformal Load-bearing Antenna Structure for Communication and Navigation (통신 항법용 다중대역 안테나 내장 스킨구조의 지상시험평가)

  • Kim, Min-Sung;Park, Chan-Yik;Cho, Chang-Min;Jun, Seung-Moon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.11
    • /
    • pp.891-899
    • /
    • 2013
  • This paper suggests a test and evaluation procedure of conformal load-bearing antenna structure(CLAS) for high speed military jet application. A log periodic patch type antenna was designed for multi-band communication and navigation antenna. Carbon/Glass fiber reinforced polymer was used as a structure supporting aerodynamic loads and honeycomb layer was used to improve antenna performance. Multi-layers were stacked and cured in a hot temperature oven. Gain, VSWR and polarization pattern of CLAS were measured using anechoic chamber within 0.15~2.0 GHz frequency range. Tension, shear, fatigue and impact load test were performed to evaluate structural strength of CLAS. Antenna performance test after every structural strength test was conducted to check the effect of structural test to antenna performance. After the application of new test and evaluation procedure to validate a new CLAS, a design improvement was found.

Performance Evaluation for Bending Strength and Tensile Type Shear Strength of GFRP Reinforced Laminated Wooden Pin (GFRP보강적층목재핀의 휨강도 및 인장형 전단내력 성능평가)

  • Song, Yo-Jin;Jung, Hong-Ju;Kim, Dae-Gil;Kim, Sang-Il;Hong, Soon-Il
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.3
    • /
    • pp.258-265
    • /
    • 2014
  • By replacing the previous metal connector on the joints of timber structure, the GFRP reinforced laminated wooden pin was produced using a wooden material and Glass fiber reinforced plastic(GFRP) composite laminate. In addition, using the reinforced wooden pin, the tensile type shear strength test was conducted. Based on the result of the bending strength test of the reinforced laminated wooden pin according to the GFRP arrangement, a specimen(Type-A) with a single insertion of GFRP for each layer have shown the most favorable performance. Also, it was verified that densified specimen hot pressed for an hour at the temperature of $150^{\circ}C$ and with the oppression pressure $1.96N/mm^2$ have shown the improved performance of 1.57 times than the specimen without the densification. And in the bending strength test considering the load direction, edgewise have shown a higher performance of 3.51 times than the flatwise. A shear strength test was conducted using the Type-A reinforced laminated wooden pin which have shown a moderate performance on the test. Based on the test conducted by differentiating the type of the joint plate and the connector, compared to the specimen(Type-DS) applied with the drift pin and steel plate, the specimen( Type-WL) applied with the GFRP reinforced laminated wooden pin and GFRP reinforced wooden laminated plate have shown 1.12 times higher shear strength and also have shown an excellent toughness even after the maximum load.