• Title/Summary/Keyword: 섬광 X-선

Search Result 19, Processing Time 0.022 seconds

The Change of Collected Light According to Changing of Reflectance and Thickness of CdWO4 Scintillator for High Energy X-ray Imaging Detection (고에너지 X-선 영상검출을 위한 CdWO4 섬광체 두께와 반사체의 반사율 변화에 따른 광 수집량의 변화)

  • Lim, Chang Hwy;Park, Jong-Won;Lee, Junghee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.12
    • /
    • pp.1704-1710
    • /
    • 2020
  • The high-energy X-ray imaging detector used for container inspection uses a thick scintillator to effectively acquire X-rays. X-ray incident on the scintillator is generally up to 9MeV. Therefore, to effectively collect X-ray, it is necessary to use a thick scintillator. To collect the light generated by the reaction between X-ray and scintillator, an optical-sensor must be combined with the scintillator. In this study, a study on the design conditions of the detector using a CdWO4 and a small sensor is described. To calculate the collected light according to the change of the scintillator thickness and the reflectance of surface, MCNP6 and DETECT2000 were used. As a result of calculating, it was confirmed that when the reflectance of the surface was low, it was appropriate to select a scintillator with a thickness of 15 to 20-mm, but as the reflectance increased, it was confirmed that it was appropriate to select a CdWO4 with a thickness of 25 to 30-mm.

Design a Four Layer Depth-Encoding Detector Using Quasi-Block Scintillator for High Resolution and Sensitivity (고분해능 및 고민감도를 위한 준 블록 섬광체를 사용한 네 층의 반응 깊이 측정 검출기 설계)

  • Seung-Jae Lee;Byungdu Jo
    • Journal of the Korean Society of Radiology
    • /
    • v.18 no.2
    • /
    • pp.65-71
    • /
    • 2024
  • To achieve high resolution and sensitivity of positron emission tomography (PET) for small animals, the detector is constructed using very thin and long scintillation pixels. Due to the structure of these scintillation pixels, spatial resolution deterioration occurs outside the system's field of view. To solve this problem, we designed a detector that could improve spatial resolution by measuring the interaction depth and improve sensitivity by using a quasi-block scintillator. A quasi-block scintillator size of 12.6 mm x 12.6 mm x 3 mm was arranged in four layers, and optical sensors were placed on all sides to collect light generated by the interaction between gamma rays and the scintillator. DETECT2000 simulation was performed to evaluate the performance of the designed detector. Flood images were acquired by generating gamma-ray events at 1 mm intervals from 1.3 mm to 11.3 mm within the scintillator of each layer. The spatial resolution and peak-to-peak distance for each location were measured in an 11 x 11 array of flood images. The average measured spatial resolution was 0.25 mm, and the average distance between peaks was 1.0 mm. Through this, it was confirmed that all locations were separated from each other. In addition, because the light signals of all layers were measured separately from each other, the layer of the scintillator that interacted with the gamma rays could be completely separated. When the designed detector is used as a detector in a PET system for small animals, it is considered that excellent spatial resolution and sensitivity can be achieved and image quality can be improved.

Monte-carlo Simulation for X-ray Photon Counting using MPPC Arrays (배열형 실리콘광증배소자를 이용한 포톤 카운팅 검출기 설계를 위한 몬테칼로 시뮬레이션 연구)

  • Lee, Seung-Jae;Baek, Cheol-Ha
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.7
    • /
    • pp.929-934
    • /
    • 2018
  • Studies for counting and detecting X-rays for the improvement of image quality and material analysis are active. In this work, the detector for X-ray photon counting was designed using Multi-pixel photon counter (MPPC) array and the detector characteristics were evaluated through simulation. Geant4 Application for Tomographic Emission (GATE) was used to obtain the position where the X-ray and the scintillation interacted, and this position was used as the light generation position of DETECT2000. 0.5 mm and 1 mm thick Gadolinium Aluminium Gallium Garnet (GAGG) scintillators were used and the light generated through a $4{\times}4$ array of MPPCs was acquired. The spatial resolution of the designed detector was evaluated by reconstructed image using the light signal acquired for each channel. We obtained images of more than 2 lp/mm in both 0.5 mm and 1 mm thick GAGG scintillation. When this detector is used in a X-ray system, a low-cost system capable of photon counting can be made.

Evaluation of Image Qualities for a Digital X-ray Imaging System Based on Gd$_2$O$_2$S(Tb) Scintillator and Photosensor Array by Using a Monte Carlo Imaging Simulation Code (몬테카를로 영상모의실험 코드를 이용한 Gd$_2$O$_2$S(Tb) 섬광체 및 광센서 어레이 기반 디지털 X-선 영상시스템의 화질평가)

  • Jung, Man-Hee;Jung, In-Bum;Park, Ju-Hee;Oh, Ji-Eun;Cho, Hyo-Sung;Han, Bong-Soo;Kim, Sin;Lee, Bong-Soo;Kim, Ho-Kyung
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.4
    • /
    • pp.253-259
    • /
    • 2004
  • in this study, we developed a Monte Carlo imaging simulation code written by the visual C$\^$++/ programing language for design optimization of a digital X-ray imaging system. As a digital X-ray imaging system, we considered a Gd$_2$O$_2$S(Tb) scintillator and a photosensor array, and included a 2D parallel grid to simulate general test renditions. The interactions between X-ray beams and the system structure, the behavior of lights generated in the scintillator, and their collection in the photosensor array were simulated by using the Monte Carlo method. The scintillator thickness and the photosensor array pitch were assumed to 66$\mu\textrm{m}$ and 48$\mu\textrm{m}$, respertively, and the pixel format was set to 256 x 256. Using the code, we obtained X-ray images under various simulation conditions, and evaluated their image qualities through the calculations of SNR (signal-to-noise ratio), MTF (modulation transfer function), NPS (noise power spectrum), DQE (detective quantum efficiency). The image simulation code developed in this study can be applied effectively for a variety of digital X-ray imaging systems for their design optimization on various design parameters.

Calculation of Gamma-ray Energy Spectrum for Spherical BGO Scintillation Detector (구형 BGO 섬광 검출기에 대한 감마선 에너지 스펙트럼 계산)

  • Doh, Sih-Hong;Kim, Jong-Il;Park, Hung-Ki;Chu, Min-Cheal;Jeong, Jung-Hyun;Kim, Gi-Dong;Lee, Dae-Won
    • Journal of Sensor Science and Technology
    • /
    • v.4 no.4
    • /
    • pp.1-9
    • /
    • 1995
  • The ${\gamma}$-ray deposition spectra were calculated by Monte Calro method to obtain the scintillation characteristics of the ${\gamma}$-ray for BGO scintillation detector with the spherical shape of 1.25 cm radius. The code used in calculating the ${\gamma}$-ray deposition spectra was made for personal computer with qbasic language. Also the ${\gamma}$-ray energy spectra of $^{22}Na$, $^{137}Cs$ and $^{207}Bi$ were measured with the detector. The energy dependent resolution below 2000 keV for the detector was determined by estimating the standard deviation of the photopeak fitted with gaussian function, and $X^{2}$ fitting using Nardi's empirical formula. The measured spectra of $^{22}Na$ and $^{137}Cs$ were compared with the broadened spectra which were obtained by broadening the calculated ${\gamma}$-ray deposition spectra with the energy dependent resolution. The absolute efficiency and the intrinsic peak efficiency of the detector were obtained by calculating the ${\gamma}$-ray deposition spectrum with the code.

  • PDF

Fabrication of Miniature Radiation Sensor Using Plastic Optical Fiber for Medical Usage (플라스틱 광섬유를 이용한 초소형 의료용 방사선 센서 제작)

  • Hwang, Young-Muk;Cho, Dong-Hyun;Cho, Hyo-Sung;Kim, Sin;Lee, Bong-Soo
    • Journal of radiological science and technology
    • /
    • v.28 no.1
    • /
    • pp.9-12
    • /
    • 2005
  • In this study, film type radiation sensor tips are fabricated for remote sensing of X or g-ray with inorganic scintillators and plastic optical fiber. The visible range of light from the inorganic scintillator that is generated by X and g-ray is guided by the plastic optical fiber and is measured by optical detector and power-meter. It is expected that the fiber-optic radiation sensor which is possible to be developed based on this study is used for remote, fast and exact sensing of X or g-ray because of its characteristics such as very small size, light weight and no interference to electromagnetic fields.

  • PDF

Development of Multi-channel Detector of X-ray Backscatter Imaging (후방산란 엑스선 영상획득을 위한 다채널 검출기 개발)

  • Lee, Jeonghee;Park, Jongwon;Choi, Yungchul;Lim, Chang Hwy;Lee, Sangheon;Park, Jaeheung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.245-247
    • /
    • 2022
  • Backscattered x-ray imaging is a technology capable of acquiring an image inside an irradiated object by measuring X-rays scattered from an object. For image acquisition, the system must include an X-ray generator and a detection system for measuring scattered x-rays. The imaging device must acquire a real-time signal at sampling intervals for x-rays generated by passing through a high-speed rotating collimator, and for this purpose, a high-speed signal acquisition device is required. We developed a high-speed multi-channel signal acquisition device for converting and transmitting signals generated by the sensor unit composed of a large-area plastic scintillator and a photomultiplier tube. The developed detector is a system capable of acquiring signals at intervals of at least 15u seconds and converting and transmitting signals of up to 6 channels. And a system includes remote control functions such as high voltage, signal gain, and low level discrimination for individual calibration of each sensor. Currently, we are conducting an application test for image acquisition under various conditions.

  • PDF

Preliminary Test of 3D Printed Plastic Scintillators for Proton Beam (3D 프린팅 플라스틱 섬광체의 양성자 빔에 대한 적용)

  • Sung-Hwan, Kim
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.6
    • /
    • pp.681-686
    • /
    • 2022
  • In this study, a scintillation resin for 3D printing was fabricated with 1.0 wt% of PPO organic scintillator, 5.0 wt% of MMA, and commercial acrylic resin. Using the scintillation resin, 3D-shaped plastic scintillator radiation sensors were successfully fabricated quickly and inexpensively with a commercial 3D DLP printer. The 3D printed plastic scintillator has a good dose-output linearity of R-square 0.998 was obtained in the range of 1 to 10 nA of beam current of the 45 MeV proton beam. The developed 3D plastic scintillator has low light output, so there is a limit to its use in low-dose-rate gamma-ray or X-ray dosimetry. However, it was confirmed that the tissue equivalent material could be usefully used for measuring high energy or high dose rates radiation, such as proton beams and ultra-high dose rate beams.

Scintillation Characteristics of CsI:X(X=Li+,K+,Rb+ Single Crystals (CsI:X(X=Li+,K+,Rb+단결정의 섬광특성)

  • Gang, Gap-Jung;Doh, Sih-Hong;Lee, Woo-Gyo;Oh, Moon-Young
    • Journal of Sensor Science and Technology
    • /
    • v.12 no.1
    • /
    • pp.1-9
    • /
    • 2003
  • CsI single crystals doped with lithium, potassium or rubidium were grown by using Czochralski method at Ar gas atmosphere. The energy resolutions of CsI(Li:0.2 mole%), CsI(K:0.5 mole%) and CsI(Rb:1.5 mole%) scintillators were 14.5%, 15.9% and 17.0% for $^{137}Cs$(0.662 MeV), respectively. The energy calibration curves of CsI(Li), CsI(K) and CsI(Rb) scintillators were linear for $\gamma$-ray energy. The time resolutions of CsI(Li:0.2 mole%), CsI(K:0.5 mole%) and CsI(Rb:1.5 mole%) scintillators measured by CFT(constant-fraction timing method) were 9.0 ns, 14.7 ns and 9.7 ns, respectively. The fluorescence decay times of CsI(Li:0.2 mole%) scintillator had a fast component and slow one of ${\tau}_1=41.2\;ns$ and ${\tau}_2=483\;ns$, respectively. The fluorescence decay times of CsI(K:0.5 mole%) scintillator were ${\tau}_1=47.2\;ns$ and ${\tau}_2=417\;ns$. And the fluorescence decay times of CsI(Rb:1.5 mole%) scintillator were ${\tau}_1=41.3\;ns$ and ${\tau}_2=553\;ns$. The phosphorescence decay times of CsI(Li:0.2 mole%), CsI(K:0.5 mole%) and CsI(Rb:1.5 mole%) scintillators were 0.51 s, 0.57 s and 0.56 s, respectively.

The Effect of High Current Pulse against Shaped Charge Jet by Flash X-Ray and Residual Penetration Depth (섬광 X선과 잔류관통깊이 분석을 통한 성형작약탄 제트에 대한 펄스전류 효과)

  • Joo, Jaehyun;Choi, Joonhong;Kim, Dongkyu;Kim, Siwoo;Kim, Jeongtae
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.5
    • /
    • pp.574-581
    • /
    • 2015
  • In this paper, the effect of high voltage current pulse against shaped charge jet was analyzed through the visualization of jet behavior using flash X-ray and comparison of depth of penetration(DOP) into RHA(Rolled Homogeneous Armor) witness plates. The behavior of jet particles has been acquired using a flash X-ray equipment when current pulse was applied into the metal jet of a shaped charge(SC) warhead. Typical results such as jet breakup and radial jet dispersion, which are due to electromagnetic pressure by current pulse, have been obtained. Dozens of penetration experiments using a shaped charge with 55 mm diameter were performed according to various combinations of major parametric variables such as electrode spacing, standoff distance from SC warhead to electrode, and charge voltage. Subsequently, interrelations between major parametric variables and DOPs into RHA were analyzed.