• Title/Summary/Keyword: 설정 압력

Search Result 393, Processing Time 0.026 seconds

정밀 플라스틱 금형 설계ㆍ해석ㆍ평가 기술개발

  • 허용정
    • Proceedings of the KAIS Fall Conference
    • /
    • 2002.05a
    • /
    • pp.147-150
    • /
    • 2002
  • 사출성형 공정의 컴퓨터 시뮬레이션(CAE)은 짧은 시간에 저 비용으로 여러 설계 및 재료와 공정조건의 조합을 시험할 수 있는 수단이다. 실제 금형을 가공하고 시제품을 생산하기 전에 미리 해석을 수행하여 봄으로써 설계의 오류 및 부적절한 공정조건의 설정을 방지할 수 있다. 컴퓨터 시뮬레이션은 공정조건에 의한 사출성형을 가능하게 해 준다. 즉, 수지의 거동, 냉각과정, 압력거동 등을 컴퓨터 화면을 통해 볼 수 있으며 이를 기초한 성형품의 예상문제점을 파악할 수 있다. 본 논문에서는 CAE기술을 응용한 Back Light Panel의 설계에 대해 논의하고자 한다.

가변댐퍼의 성능해석

  • 최용빈;박우철;최승복;정재천
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1992.04a
    • /
    • pp.227-231
    • /
    • 1992
  • 본 연구에서는 ER(electro-rheological) 유체을 이용한 가변댐퍼(variable damper)를 제안했다. 전기장(electric field) 부하시 Bingham특성을 갖는 ER유체는 전기장에따라 항복전단응력이 변하기 때문에이를 이용하여 댐핑력을 제어할 수 있다. 피스톤의 상하압력차가 전기장의 함수이기 때문에 기존의 비능동 혹은 능동형 댐퍼에서 필요로하는 복잡한 밸브시스템이 필요없으며, 따라서 구조면에서 매우 간단하게 설계될 수 있고, 반응시간 또한 매우 빠르다. 간단한 현가정치 모델을 설정 하여제안된 ER 댐퍼의 효율성과 우수성을 주파수 및 시간 영역에서 해석하였다.

The Prediction of Volumetric Efficiency Considering Gas Exchange Process in Spark Ignition Engine (전기점화기관에서 흡배기과정을 고려한 체적효율의 예측 및 실험)

  • Soh, S. G.
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.9 no.4
    • /
    • pp.77-85
    • /
    • 1987
  • 본 논문은 단기통 4사이클 전기점화기관에서 가스교환 과정이 체적효율에 미치는 영향에 대하여 연구한 것이다. 가스교환 과정의 수학적 모델을 설정하고 수치해석을 수행한 결과 체적효율은 가스교환과정과 관련되는 밸브 개폐시기(1,2)보다는 흡배기관의 압력에 의하여 더 큰 영향을 받는 다는 것을 알 수 있었다. 실험에 있어서는 각각 밸브 개폐시기가 다른 3종류의 캠을 사용하였 으며 수치 해석결과와 실험결고가 비교적 잘 일치하였다.

  • PDF

담배연기와 관련한 CORESTA 학술활동 현황

  • 이문수
    • Proceedings of the Korean Society of Tobacco Science Conference
    • /
    • 2001.05a
    • /
    • pp.79-87
    • /
    • 2001
  • 최근 담배연기 성분에 대한 사회적 문제점이 대두되면서 이들 성분에 대한 분석법의 개발과 감소방안에 대한 연구에 CORESTA가 주도적 역할 담당하고 있으며, 국제 공동연구 등을 통하여 담배산업에 대한 각종 규제와 압력에 공동대체 방안을 모색하고 효과적인 정책수립에 기여하고 있다. 이에 그 동안 CORESTA의 국제 공동연구 현황을 소개하고, 담배연기성분에 대한 효과적 연구 방향을 설정하므로써 담배산업의 발전을 위한 기초자료를 제공하고자 한다.

  • PDF

Numerical Modeling of Current Density and Water Behavior at a Designated Cross Section of the Gas Diffusion Layer in a Proton Exchange Membrane Fuel Cell (고분자전해질 연료전지의 동작압력에 대한 가스 확산층의 위치 별 전류밀도 및 수분거동에 대한 수치해석)

  • Kang, Sin-Jo;Kim, Young-Bae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.2
    • /
    • pp.161-170
    • /
    • 2012
  • There are many factors to consider when attempting to improve the efficiency of fuel cell operation, such as the operation temperature, humidity, stoichiometry, operation pressure, geometric features, etc. In this paper, the effects of the operation pressure were investigated to find the current density and water saturation behavior on a cross section designated by the design geometry. A two-dimensional geometric model was established with a gas channel that can provide $H_2$ to the anode and $O_2$ and water vapor to the cathode gas diffusion layer (GDL). The results from this numerical modeling revealed that higher operation pressures would produce a higher current density than lower ones, and the water saturation behavior was different at operation pressures of 2 atm and 3 atm in the cathode GDL. In particular, the water saturation ratios are higher directly below the collector than in other areas. In addition, this paper presents the dependence of the velocity behavior in the cathode on pressure changes, and the velocity fluctuations through the GDL are higher in the output area than in inlet area. This conclusion will be utilized to design more efficient fuel cell modeling of real fuel cell operation.

The Effect of Gaze Directions and Pressure Levels on longus colli and Sternocleidomastoid Thickness during Cranio-cervical flexor Exercise in Young Adults (젊은 성인에서 머리-목 굽힘근 운동 시 시선과 압력이 목긴근과 목빗근의 근두께에 미치는 영향)

  • Cha, Ha-ri;Lee, Byoung-Kwon;Seo, Dong-Kwon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.2
    • /
    • pp.659-666
    • /
    • 2021
  • This study aimed to investigate the effect of changes in pressure levels and gaze directions on deep neck flexor muscle thickness. Twenty-seven subjects participated in this study. Ultrasound imaging of the longus colli (LC) and sternocleidomastoid (SCM) were measured in four gaze directions (0°, 20°, 40°, 60°) and five pressure levels (20 mmHg, 22 mmHg, 24 mmHg, 26 mmHg, 28 mmHg) during cranial-cervical flexor (CCF) exercises. Repeated ANOVA was performed for analysis of muscle thickness difference according to gaze direction and pressure levels in LC and SCM. Results: LC showed a significant difference between 0° and 20°, 0° and 40°, and 0° and 60° at pressures of 20 mmHg and 22 mmHg (p<.05). SCM displayed a significant difference between 0° and 20°, 20° and 40°, and 40° and 60° at 28 mmHg (p<.05). In this study, it was found that setting the gaze direction to 20° for the CCF exercise can increase the activation of LC and lower the activity of SCM to obtain the effect of exercise. Based on the results of this study, it is hoped that the beneficial effects of the CCF exercise can be increased by setting an optimal gaze direction in a clinical environment.

Numerical Study of Flow Characteristics in Elementary Paths of Velocity-Control Trim (속도 제어형 트림의 단위 요소 유로의 유동특성에 관한 수치적 연구)

  • Kim, Dae-Kwon;Sohn, Chae-Hoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.3
    • /
    • pp.245-253
    • /
    • 2011
  • We investigate the flow characteristics of elementary-flow paths with $90^{\circ}$ bends; a velocity-control trim consists of such paths. For geometric similarity, the width and length of each path are selected, and the number of bends is 0, 4, or 8. The flow tests are conducted with the same flow-path elements. The numerical results are in good agreement with the experimental data. In elements without bends, the volume flow rate decreases with the length of the flow path, with a constant pressure drop between the inlet and the outlet. However, in flow paths with $90^{\circ}$ bends, it increases and then decreases with the length of the flow path. For a fixed number of $90^{\circ}$ bends, better pressure-drop characteristics are observed as the length of the flow path increases. For a fixed flow-path length, a flow-path element with more bends has a smoother pressure drop along the path.

Development of Load-Cell-Based Anemovane (로드셀형 풍향풍속계 개발)

  • Jeon, Byeong Ha;Han, Dong Seop;Lee, Kwon-Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.5
    • /
    • pp.685-691
    • /
    • 2013
  • A load-cell-type anemovane operates based on wind vector properties. The developed load-cell-type anemovane is of a fixed type in which the wing does not rotate, unlike in the case of existing anemovanes. The load-cell-type anemovane is required to accurately derive the correlation between the load ratio and the wind direction in order to develop a qualified product. This is because the load ratio repeats every $90^{\circ}$ owing to the use of four load cells, and its value varies nonlinearly according to the wind direction. In this study, we compared analytical results with experimental results. Fluid analysis was carried out using ANSYS CFX. Furthermore, the prototype was tested using a self-manufactured wind tunnel. The wind direction was selected as the design variable. 13 selected wind direction conditions ranging from $0^{\circ}$ to $90^{\circ}$ with an interval of $7.5^{\circ}$ for analysis were defined. Furthermore, 10 wind direction conditions with an interval of $10^{\circ}$ for the experiment were defined. We derived the relations between the pressure ratio and the wind direction through the experiment and fluid analysis.

Performance Analysis by CFD and Aerodynamic Design of 100kW Class Radial Turbine Using Waste Heat from Ship (선박 폐열을 이용한 100kW급 구심터빈 공력설계 및 CFD에 의한 성능해석)

  • Mo, Jang-Oh;Kim, You-Taek;Kim, Mann-Eung;Oh, Cheol;Kim, Jeong-Hwan;Lee, Young-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.2
    • /
    • pp.175-181
    • /
    • 2011
  • The purpose of this study is to secure the design data for the optimization of the radial turbine and heat cycle system, by using the CFD analysis technique and the design of 100kW class radial turbine applicable to waste heat recovery generation system for ship. Radial turbine was comprised of scroll casing, vane nozzle with 18 blades and rotor with 13 blades, and analysis grid was used to about 2.3 million. Mass flow rate and rotational speed was 0.5kg/s, 75,0000rpm, respectively. Eight kinds of inlet pressure was set between 195 and 620kPa. As the flow accelerated through the nozzle passage to the throat, the pressure level at the pressure and suction sides becomed similar to about Mach number of 0.35. When the inlet temperature and pressure was $250^{\circ}C$, 352kPa respectively, the isentropic efficiency and mechanical power showed the analysis results of 74% and 108kW.

Blowdown Prediction of Safety Relief Valve and FSI Analysis (안전릴리프밸브의 블로우 다운 예측 및 유체-구조 연성해석)

  • Choi, Ji-Won;Jang, Si-Hwan;Lee, Kwon-Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.12
    • /
    • pp.729-734
    • /
    • 2017
  • A safety relief valve is a device that relieves excessive pressure in piping lines or tanks and maintains pressure at the appropriate pressure level for use. The (pressure in the) safety valve is directly influenced by the change in the back pressure, depending on whether the vents in the spring bonnet are vented to the atmosphere or to the outlet. The back pressure is divided into the built-up back pressure and the superimposed back pressure, and the back pressure characteristics vary according to the usage conditions. The safety valve used in this study is a Conventional Safety Relief Valve. The blowdown of the safety valve is predicted by establishing the equilibrium equation between the opening force and spring force considering the back pressure characteristics. Its reliability is secured by using CFX17.1. In addition, the safety of the safety valve trim was examined through fluid-structure interaction analysis.