• Title/Summary/Keyword: 설비용량

Search Result 714, Processing Time 0.035 seconds

Development of 3,300V 1MVA Multilevel Inverter using Series H-Bridge Cell (3,300V 1MVA H-브릿지 멀티레벨 인버터 개발)

  • 박영민;김연달;이현원;이세현;서광덕
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.8 no.6
    • /
    • pp.478-487
    • /
    • 2003
  • In this paper, a type and special feature of Multi-level inverter used in medium-voltage and high-capacity motor driver is introduced. Especially, a power quality and structural advantages of H-Bridge Multi-level inverter is described. It presented the specific structure of power circuit, design method, controller composition and PWM techniques of the cascaded H-Bridge Multi-level inverter which is developed. The feasibility of the developed product based on 3,300V lMVA 7-level H-bridge inverter was studied by experiments and we get conclusion that 1)generate of near-sinusoidal output voltage; 2)is low dv/dt at output voltage; 3)reduce the harmonic injection at input; Experiment demonstrate that it is very economical in productivity because of using the existing production technique and examination equipment, and has the reliability and a good maintenance due to the structure of Power Cell unit combination as well as low cost IGBT.

Customized unsteady analysis and minimization of damage due to unsteady flow in water distribution system (상수관망의 맞춤형 부정류해석 및 부정류피해 최소화 방안)

  • Kwon, Hyuk Jae;Yoo, Min Kyu
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.287-291
    • /
    • 2015
  • 본 연구에서는 두 지역의 실제 상수관망에 대해서 부정류해석을 수행하였고 각각의 상수관망에 필요한 부정류피해 최소화방안을 제시하였다. 첫 번째 대상지역은 베트남 호치민으로 148개 절점과 162개의 파이프로 이루어진 소블럭 상수관망이며 두 번째 대상지역은 파주시 광탄면으로 512개 절점과 527개의 파이프로 이루어진 세 개의 소블럭 상수관망이다. 두지역의 상수관망은 지형적면이나 규모면에서 다른 모습을 하고 있기 때문에 부정류해석 시 발생가능한 피해유형이 틀린 것으로 나타났다. 호치민의 경우 배수지의 높이가 낮고 도시 내 표고차가 없어서 관망 내 평균수압이 $1kg/cm^2$을 약간 상회하는 수준으로 수압이 낮고 수압차 역시 작다. 따라서 상수관망에서 일어날 수 있는 소요수량의 변화나 소화전 사용과 같은 작은 변화에도 역류발생이 빈번히 일어나는 것으로 나타났으며 역류발생이 잦은 파이프를 선정할 수 있었다. 상당히 많은 파이프에서 단기간 역류가 발생하는 것을 확인할 수 있었다. 짧은 기간에 발생하는 변화에 대한 단기간 역류는 교차연결(Cross-Connection)의 문제를 야기할 수 있다. 따라서 역류발생이 빈번히 일어나는 파이프 주위에 check valve나 역지밸브등의 설치를 통해 역류로 인한 피해를 최소화할 수 있다. 파주시 광탄면 지역의 소블럭 집합으로써 고저차가 많은 지역이다. 배수지 밸브개폐 시 발생 가능한 수충격에 대한 시뮬레이션과 펌프장정지로 인해 발생할 수 있는 수충격에 발생 시뮬레이션을 수행하였고 관망내에서 자주 발생하는 밸브개폐로 인한 시뮬레이션을 수행하였다. 그 결과 광탄의 경우 수충격 발생위험 지점은 배수지 근처로 나타났고 수격압이 최대 $2.5kg/cm^2$에서 $3.0kg/cm^2$까지 발생 가능한 것으로 나타났고 밸브개폐시간이 1-2초 지연되어도 상당히 큰 수격압을 줄일 수 있는 것으로 나타났다. 수충격압이 크게 발생할 수 있는 지역에 수충격피해 최소화를 위해 surge tank와 같은 장치를 설치해야 한다. 또한 발생가능한 수격압의 크기를 통계적기법을 통해 확률밀도함수로 나타낼 수 있었다. 이 결과는 앞으로 상수관망의 설계나 운영에서 수충격피해 방지 장치 및 설비를 시공할 때 장치의 규모나 용량을 결정할 때 유용한 정보가 될 것으로 판단된다.

  • PDF

Construction of the Heat Pump System Using Thermal Effluents for Greenhouse Facilities in Jeju and Evaluation of Cooling Performance (제주 시설온실 냉난방을 위한 발전소 온배수 활용 열펌프 시스템 구축 및 냉방성능 평가)

  • Lee, Yeon-Gun;Heo, Jaehyeok;Lee, Dong-Won;Hyun, Myung-Taek
    • Journal of Energy Engineering
    • /
    • v.27 no.4
    • /
    • pp.70-79
    • /
    • 2018
  • A heat pump system using the thermal effluent from the Jeju thermal power plant of KOMIPO was constructed with the capacity of 300 RT to supply cool or hot water to greenhouse facilities located 3 km from the power station. The way of transporting heat from the thermal effluent to greenhouses at a long distance was optimized, and a monitoring system to measure the water temperature and detect a leakage in a pipe conduit was also installed. This paper presents the system configuration of the constructed heat pump system for air conditioning and heating of greenhouse facilities in Jeju, and the characteristics of major components deployed in the system. The preoperational tests of the heat pump system were conducted during the summer season in 2018 for evaluation of its cooling performance. The operational stability and cooling performance of the heat pump system were confirmed by investigating the measured fluid temperature and flow rate, and COP of the heat pump in a cooling mode.

A Study on Prevention of Fire Accidents by Splash Filling in the Filtration Process of Pharmaceutical Companies (제약회사 여과 공정중 스플래쉬 필링에 의한 화재사고 예방대책에 관한 연구)

  • Kim, Sang Gil;Lee, Dae Joon;Yang, Seung Bok;Rhim, Jong Guk
    • Journal of the Korean Institute of Gas
    • /
    • v.25 no.6
    • /
    • pp.29-34
    • /
    • 2021
  • Flammable substances are often present in the raw materials of pharmaceutical products manufactured by pharmaceutical companies. In this case, an excessive amount of flammable substances is added to make an intermediate, and flammable substances that do not participate in the reaction are removed through filtration and drying steps. In addition, the flammable liquid separated in the filtration process is accumulated in the form of splash filling in the filtrate container. In this case, vapor and mist of flammable liquid are generated, which lowers the lower limit of explosion and minimum ignition energy, and increases the risk of fire and explosion due to complex charging. In this study, by analyzing fire accidents that occurred during the recent filtration process of pharmaceutical companies, it is proposed to prevent static electricity accumulation by measures of nitrogen supply facilities, capacity improvement, conductive filter fabric and so on.

A study on the utilization of sensor-based measurement data to improve turbidity prediction accuracy (탁수예측 정확도 개선을 위한 센서기반 측정자료의 활용방안 연구)

  • Kim, Jong Min;Lee, Sang Ung;Chung, Se Woong;Kim, Young Do
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.44-44
    • /
    • 2022
  • 우리나라의 경우 강수량의 2/3 정도가 하절기에 집중되는 강우특성상 해마다 여름철 홍수기의 탁수 문제가 다양하게 발생하고 있다. 이상강우와 기상이변에 의한 집중강우가 증가 추세이며, '02년 태풍 루사', '03년 태풍 매미', '06년 에위니아'부터 20년 마이삭, 하이선 까지 장마와 태풍에 의한 유입량이 급증하는 시기 탁수의 유입으로 수중 탁도가 급상승하며 댐 저수지 내 탁수 문제가 발생하였다. 특히 연 평균 물사용량의 대부분을 하천 및 댐 저수지를 이용하는 우리나라의 경우 탁수 문제가 장기화될 경우 댐 하류 해당 지역 농업, 공업, 수생태 등 사회적, 환경적으로 많은 문제를 발생시킨다. 이러한 탁수 예측을 통한 대응을 위해 탁수 모델링에 대한 연구가 활발히 진행되고 있다. 탁수를 모델링을 위해서는 유량, 수온, SS 데이터가 필요하다. 이를 위해 국가측정망에서 하천 및 댐 저수지 내 SS를 측정하여 탁수를 측정 하고 있으나 설비가 미흡하여 데이터 해상도가 낮다는 한계점이 있으며 주요 댐 저수지 내에서는 수자원공사에서 관리하는 자동 측정기기를 활용하여 높은 데이터 해상도를 유지 하고 있으나 댐 별, 기상 조건에 따라 미측정 기간이 존재한다. 탁도를 측정을 위한 센서로는 Optical Backscatter Sensor(OBS), YSI 등이 있으며 SS를 측정하기 위한 센서는 레이저부유사측정기(LISST: Laser In-Situ Scattering and Transmissometry) 등의 장비를 이용하고 있다. 하지만 이런 첨단 센서의 경우 또한 수중 고정하여 측정하기에는 장비의 안정성 등의 이유로 한계가 있음에 따라 취득된 유량, 수온, SS, 탁도 데이터를 기반으로 분석을 통해 미측정 기간에 대한 보간이 필요하다. 본 연구에서는 국가 측정망 데이터 및 강우시 유량에 따른 탁수 유입의 증가와 탁수 유입에 따른 항목별 측정 데이터를 기반으로 유량, 수온, SS 미측정 기간을 보간하여 입력자료로 탁수를 모의하여 분석하고자 하였다.

  • PDF

Optimization of Heat Exchange Network of SOFC Cogeneration System Based on Agricultural By-products (농산부산물 기반 SOFC 열병합발전 시스템 열교환망 최적화)

  • Gi Hoon Hong;Sunghyun Uhm;Hyungjune Jung;Sungwon Hwang
    • Journal of the Korean Institute of Gas
    • /
    • v.28 no.1
    • /
    • pp.1-10
    • /
    • 2024
  • In this study, we constructed a process simulation model for an agricultural by-products based Solid Oxide Fuel Cell (SOFC) combined heat and power generation system as part of the introduction of technology for energy self-sufficiency in the agricultural sector. The aim was to reduce the burden of increasing fuel and electricity consumption due to rapid fluctuations in international oil prices and the expansion of smart farming in domestic farms, while contributing to the national greenhouse gas reduction goals. Based on the experimental results of 0.3 ton/day torrefied agricultural by-product gasification experiment, a model for an agricultural by-product-based SOFC cogeneration system was constructed, and optimization of the heat exchange network was conducted for SOFC capacities ranging from 4 to 20 kW. The results indicated that an 8 kW agricultural by-product-based SOFC cogeneration system was optimal under the current system conditions. It is anticipated that these research findings can serve as foundational data for future commercial facility design.

Utilizing the Idle Railway Sites: A Proposal for the Location of Solar Power Plants Using Cluster Analysis (철도 유휴부지 활용방안: 군집분석을 활용한 태양광발전 입지 제안)

  • Eunkyung Kang;Seonuk Yang;Jiyoon Kwon;Sung-Byung Yang
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.1
    • /
    • pp.79-105
    • /
    • 2023
  • Due to unprecedented extreme weather events such as global warming and climate change, many parts of the world suffer from severe pain, and economic losses are also snowballing. In order to address these problems, 'The Paris Agreement' was signed in 2016, and an intergovernmental consultative body was formed to keep the average temperature rise of the Earth below 1.5℃. Korea also declared 'Carbon Neutrality in 2050' to prevent climate catastrophe. In particular, it was found that the increase in temperature caused by greenhouse gas emissions hurts the environment and society as a whole, as well as the export-dependent economy of Korea. In addition, as the diversification of transportation types is accelerating, the change in means of choice is also increasing. As the development paradigm in the low-growth era changes to urban regeneration, interest in idle railway sites is rising due to reduced demand for routes, improvement of alignment, and relocation of urban railways. Meanwhile, it is possible to partially achieve the solar power generation goal of 'Renewable Energy 3020' by utilizing already developed but idle railway sites and take advantage of being free from environmental damage and resident acceptance issues surrounding the location; but the actual use and plan for these solar power facilities are still lacking. Therefore, in this study, using the big data provided by the Korea National Railway and the Renewable Energy Cloud Platform, we develop an algorithm to discover and analyze suitable idle sites where solar power generation facilities can be installed and identify potentially applicable areas considering conditions desired by users. By searching and deriving these idle but relevant sites, it is intended to devise a plan to save enormous costs for facilities or expansion in the early stages of development. This study uses various cluster analyses to develop an optimal algorithm that can derive solar power plant locations on idle railway sites and, as a result, suggests 202 'actively recommended areas.' These results would help decision-makers make rational decisions from the viewpoint of simultaneously considering the economy and the environment.

A Study on the Power Supply and Demand Policy to Minimize Social Cost in Competitive Market (경쟁시장 하에서 사회적 비용을 고려한 전력수급정책 방향에 관한 연구)

  • Kwon, Byung-Hun;Song, Byung Gun;Kang, Seung-Jin
    • Environmental and Resource Economics Review
    • /
    • v.14 no.4
    • /
    • pp.817-838
    • /
    • 2005
  • In this paper, the resource adequacy as well as the optimum fuel mix is obtained by the following procedures. First, the regulation body, the government agency, determine the reliability index as well as the optimum portfolio of the fuel mix during the planning horizon. Here, the resources with the characteristics of public goods such as demand-side management, renewable resources are assigned in advance. Also, the optimum portfolio is determined by reflecting the economics, environmental characteristics, public acceptance, regional supply and demand, etc. Second, the government announces the required amount of each fuel-type new resources during the planning horizon and the market participants bid to the government based on their own estimated fixed cost. Here, the government announces the winners of the each auction by plant type and the guaranteed fixed cost is determined by the marginal auction price by plant type. Third, the energy market is run and the surplus of each plant except their cost (guaranteed fixed cost and operating cost) is withdrew by the regulatory body. Here, to induce the generators to reduce their operating cost some incentives for each generator is given based on their performance. The performance is determined by the mechanism of the performance-based regulation (PBR). Here the free-riding performance should be subtracted to guarantee the transparent competition. Although the suggested mechanism looks like very regulated one, it provides two mechanism of the competition. That is, one is in the resource construction auction and the other is in the energy spot market. Also the advantages of the proposed method are it guarantee the proper resource adequacy as well as the desired fuel mix. However, this mechanism should be sustained during the transient period of the deregulation only. Therefore, generation resource planning procedure and market mechanisms are suggested to minimize possible stranded costs.

  • PDF

Suggestion for Technology Development and Commercialization Strategy of CO2 Capture and Storage in Korea (한국 이산화탄소 포집 및 저장 기술개발 및 상용화 추진 전략 제안)

  • Kwon, Yi Kyun;Shinn, Young Jae
    • Economic and Environmental Geology
    • /
    • v.51 no.4
    • /
    • pp.381-392
    • /
    • 2018
  • This study examines strategies and implementation plans for commercializing $CO_2$ capture and storage, which is an effective method to achieve the national goal of reducing greenhouse gas. In order to secure cost-efficient business model of $CO_2$ capture and storage, we propose four key strategies, including 1) urgent need to select a large-scale storage site and to estimate realistic storage capacity, 2) minimization of source-to-sink distance, 3) cost-effectiveness through technology innovation, and 4) policy implementation to secure public interest and to encourage private sector participation. Based on these strategies, the implementation plans must be designed for enabling $CO_2$ capture and storage to be commercialized until 2030. It is desirable to make those plans in which large-scale demonstration and subsequent commercial projects share a single storage site. In addition, the plans must be able to deliver step-wised targets and assessment processes to decide if the project will move to the next stage or not. The main target of stage 1 (2019 ~ 2021) is that the large-scale storage site will be selected and post-combustion capture technology will be upgraded and commercialized. The site selection, which is prerequisite to forward to the next stage, will be made through exploratory drilling and investigation for candidate sites. The commercial-scale applicability of the capture technology must be ensured at this stage. Stage 2 (2022 ~ 2025) aims design and construction of facility and infrastructure for successful large-scale demonstration (million tons of $CO_2$ per year), i.e., large-scale $CO_2$ capture, transportation, and storage. Based on the achievement of the demonstration project and the maturity of carbon market at the end of stage 2, it is necessary to decide whether to enter commercialization of $CO_2$ capture and storage. If the commercialization project is decided, it will be possible to capture and storage 4 million tons of $CO_2$ per year by the private sector in stage 3 (2026 ~ 2030). The existing facility, infrastructure, and capture plant will be upgraded and supplemented, which allows the commercialization project to be cost-effective.

Power Generating Performance of Photovoltaic Power System for Greenhouse Equipment Operation (온실설비 작동용 태양광발전시스템의 발전 성능 분석)

  • Yoon, Yong-Cheol;Bae, Yong-Han;Ryou, Young-Sun;Lee, Sung-Hyoun;Suh, Won-Myung
    • Journal of Bio-Environment Control
    • /
    • v.18 no.3
    • /
    • pp.177-184
    • /
    • 2009
  • For the purpose of reducing the cost for greenhouse operation by acquiring the electric power necessary for it, this study installed a solar photovoltaic system on the roof of the building adjacent to green-houses and experimentally examined the quantity of power generation based on weather conditions. The results of the study are as per the below: The maximum, average and minimum temperature while the experiment was conducted was $0.4{\sim}34.1,\;-6.1{\sim}22.2$, and $-14.1{\sim}16.7^{\circ}C$ respectively, and the solar radiation was $28.8MJ{\cdot}m^{-2}$ (maximum), $14.9MJ{\cdot}m^{-2}$ (average), and $0.6MJ{\cdot}m^{-2}$ (minimum). The quantity of electric power didn't increase in proportion to the quantity of solar radiation and instead, it was almost consistent around 750W. Daily maximum, average and minimum consumption of electric power was 5.2kWh, 2.5kWh and 0kWh respectively. Based on the average electric power consumption of the system used for this experiment, it was sufficient in case the capacity and the working time of a hot blast heater are small, but it was short in case they are big. In case the capacity of the hot blast heater is big, the average electric power quantity will be sufficient for array area $21m^2$, about three times of the present area. In summer when the temperature of the array becomes high, the generation of electric power didn't increase in proportion to the quantity of solar radiation, but this experiment result shows a high correlation between two factors (coefficient of correlation 0.84).