• Title/Summary/Keyword: 설계 강우량

Search Result 391, Processing Time 0.03 seconds

The feasibility study for reclaimed wastewater reuse in Saek-dal of Jeju island (제주 색달하수처리장 방류수 재이용 타당성 평가)

  • Lee, Kwang-Ya;Kim, Hae-Do;Joo, Jin-Hun;Kim, Young-Jin;Kang, Su-Man
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.439-439
    • /
    • 2012
  • 본 연구의 목적은 색달하수처리장 방류수를 농업용수 및 조경용수 등으로 활용하기 위해 하수 처리수 재이용 사업 타당성을 분석하고자 한다. 색달하수처리장 하수재이용사업은 제주도의 지하수자원 보존과 수자원 이용의 고도화 및 방류수 재이용을 통한 갈수기 농업용수 보급으로 물자원(지하수)을 절약하고자 색달하수처리장을 대상으로 하수처리수를 농업용수로 공급하는 사업이다. 대상지역은 서귀포시 예래동에 위치하고 있으며, 중문관광단지가 소재한 마을로 제주관광의 중심지이다. 서귀포시의 총 인구는 153,797명이며 하수도 보급률은 77.7%이다('10 제주특별자치도 통계연보). 색달하수처리장이 위치한 예래동의 농지면적이 1,122ha이며, 밭(772.6)과 과수원(280.2) 등 제주도의 전형적인 농촌마을이다. 대상지역의 주요작물은 감귤, 무, 마늘, 양배추 등이 많이 재배된다. 제주도는 연평균 강수량이 1,832.6mm로 전국평균 1,274 mm 보다 많은 편이며, 월별 강수량은 6~8월까지 3개월 동안 연 강우량의 44%정도가 내려 여름 장마철에 집중되는 것으로 나타났다. 대상지구의 필요수량은 농업생산정비 계획설계기준에 제시된 방법을 이용하여 산정하였다. 지구내 재이용수를 공급할 관정 4개소의 총 설계 채수량은 $2,916m^3/day$, 급수면적은 125.0ha이며, 10년한발(가뭄)시 안정적인 농업용수 공급을 위하여 $4,964m^3/day$(농업용수 $3,834m^3/day$, 조경용수 $1,130m^3/day$)이 필요하다. 하수처리수 재이용을 위한 처리시설의 연간 유지관리비는 인건비, 전력비, 시설물 내구연한을 고려하여 적용 하였으며, 상수도 생산비 절감 비용과 하수재이용수 생산단가를 통한 단위 편익을 산정하면 401.5원/$m^3$ 이다. 연차별 수익으로 산정하여 비용 편익 비율(B/C Ratio)을 나타내면 1.22로 나타났다. 본 연구의 결과로부터, 대상지구의 수자원여건, 입지여건, 장래 수요, 등을 고려할 때, 제주 색달 하수처리장의 하수처리수의 농업용수재이용 사업은 타당성이 매우 높다고 할 수 있다. 그리고 특히 이 지역은 관광단지의 조경용수 수요(중문골프장 등)가 있어 용수의 유료공급이 가능하고 이를 유지관리비로 충당할 수 있어 타지역에 비해 사업의 경제성과 환경보전성이 매우 크다.

  • PDF

Numerical Simulation of the Flood Event Induced Temporally and Spatially Concentrated Rainfall - On August 17, 2017, the Flood Event of Cheonggyecheon (시공간적으로 편중된 강우에 의한 홍수사상 수치모의 - 2017년 8월 17일 청계천 홍수사상을 대상으로)

  • Ahn, Jeonghwan;Jeong, Changsam
    • Journal of Korean Society of Disaster and Security
    • /
    • v.11 no.2
    • /
    • pp.45-52
    • /
    • 2018
  • This study identifies the cause of the accident and presents a new concept for safe urban stream management by numerical simulating the flood event of Cheonggyecheon on August 17, 2017, using rain data measured through a dense weather observation network. In order to simulate water retention in the CSO channel listed as one of the causes of the accident, a reliable urban runoff model(XP-SWMM) was used which can simulate various channel conditions. Rainfall data measured through SK Techx using SK Telecom's cell phone station was used as rain data to simulate the event. The results of numerical simulations show that rainfall measured through AWSs of Korea Meteorological Administration did not cause an accident, but a similar accident occurred under conditions of rainfall measured in SK Techx, which could be estimated more similar to actual phenomena due to high spatial density. This means that the low spatial density rainfall data of AWSs cannot predict the actual phenomenon occurring in Cheonggyecheon and safe river management needs high spatial density weather stations. Also, the results of numerical simulation show that the residual water in the CSO channel directly contributed to the accident.

Evaluation of Runoff‧Peak Rate Runoff and Sediment Yield under Various Rainfall Intensities and Patterns Using WEPP Watershed Model (다양한 강우강도 및 패턴에 따른 WEPP 모형의 유출‧첨두유출‧토양유실량 평가)

  • Choi, Jae-Wan;Ryu, Ji-Chul;Kim, Ik-Jae;Lim, Kyoung-Jae
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.8
    • /
    • pp.795-804
    • /
    • 2012
  • Recently, changes in rainfall intensity and patterns have been causing increasing soil loss worldwide. As a result, the water ecosystem becomes worse and crops yield are reduced with soil loss and nutrient loss with it. Many studies have been proposed to estimate runoff and soil loss to predict or decrease non-point source pollution. Although the USLE has been used for many years in estimating soil losses, the USLE cannot reflect effects on soil loss of changes in rainfall intensity and patterns. The WEPP, physically based model, is capable of predicting soil loss and runoff using various rainfall intensity. In this study, the WEPP model was simulated for sediment yield, runoff and peak runoff using data of 5, 10, 30, 60 minute term rainfall, Huff's method and design rainfall. In case of rainfall interval of 5 minutes and 60 minutes, the sediment and runoff values decreased by 24% and 19%, respectively. The peak rate runoff values decreased by 16% when rainfall interval changed from 5 minutes to 60 minutes, indicating the peak rate runoff values are affected by rainfall intensity to some degrees. As a result of simulating using Huff's method, all values (sediment yield, runoff, peak runoff) were found to be the greatest at third quartile. According to the analysis under various design rainfall conditions (2, 3, 5, 10, 20, 30, 50, 100, 200, 300 years frequency), sediment yield, runoff, and peak runoff of 906.2%, 249.4% and 183.9% were estimated using 2 year to 300 year frequency rainfall data.

A study on the rainfall management target considering inter-event time definition (IETD) (무강우 지속시간(IETD)을 고려한 빗물관리 목표량 설정 방안 연구)

  • Baek, Jongseok;Kim, Jaemoon;Park, Jaerock;Lim, Kyoungmo;Shin, Hyunsuk
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.8
    • /
    • pp.603-611
    • /
    • 2022
  • In urban areas, the impermeable area continues to increase due to urbanization, which interferes with the surface penetrating and infiltrating of rainwater, causing most rainwater runoff to the surface, deepening the distortion of water circulation. Distortion of water circulation affects not only flood disasters caused by rainfall and runoff, but also various aspects such as dry stream phenomenon, deterioration of water quality, and destruction of ecosystem balance, and the Ministry of Environment strongly recommends the use of Low Impact development (LID) techniques. In order to apply the LID technique, it is necessary to set a rainwater management target to handle the increase in outflow after the development of the target site, and the current standard sets the rainwater management target using the 10-year daily rainfall. In this study, the difference from the current standards was analyzed through statistical analysis and classification of independent rainfall ideas using inter-event time definition (IETD) in setting the target amount of rainwater management to improve water circulation. Using 30-year rainfall data from 1991 to 2020, methods such as autocorrelation coefficient (AC) analysis, variation coefficient (VC) analysis, and annual average number of rainfall event (NRE) analysis were applied, and IETD was selected according to the target rainfall period. The more samples the population had, the more IETD tended to increase. In addition, by analyzing the duration and time distribution of independent rainfall according to the IETD, a plan was proposed to calculate the standard design rainfall according to the rainwater management target amount. Therefore, it is expected that it will be possible to set an improved rainwater management target amount if sufficient samples of independent rainfall ideas are used through the selection of IETD as in this study.

Flood Damage Reduction Plan Using HEC-FDA Model (HEC-FDA 모형을 이용한 홍수피해 저감계획)

  • Lee, Jongso;Kim, Duckhwan;Kim, Jungwook;Han, Daegun;Kim, Hung Soo
    • Journal of Wetlands Research
    • /
    • v.17 no.3
    • /
    • pp.237-244
    • /
    • 2015
  • This study is estimated the flood damage probability of the flood discharge, the flood stage estimation and Economic Analysis for Flood Control about considering of uncertainty. Sum River Basin has chosen and the probability precipitation is estimated by using the concept of critical rainfall duration depending on the frequency of each flood stage estimation point. For calculating the expected annual damage, the functions of long term hazard, discharge-frequency, stage-discharge and depth-damage are established for 8 areas in Sum River Basin. The expected annual damaged is obtained which is based on the sampling informations through more than 500,000 simulation from the functions of considered uncertainty. The result about the optimum frequency and Investment Priorities are estimated by conducting the evaluation about planning the levee of various of Design Frequency. In analysis result, 12% of B/C value has increased if the uncertainty has concerned. Also the optimum frequency or Investment Priorities are possible to be changed. If the political and social analysis perform together it would be helpful to have a reasonable decision other than only the economical analysis as actual Flood damaged reduction planning.

Effectiveness of Settling Treatment System to Reduce Urban Nonpoint Source Pollutant Load by First Flush (초기 강우에 의한 도시 유역 비점오염 부하의 유입 저감을 위한 침강 처리 시설 적용 타당성 분석)

  • Kim, Jaeyoung;Seo, Dongil;Lee, Tongeun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.3
    • /
    • pp.140-148
    • /
    • 2017
  • The effectiveness of the first flush treatment system using settling process was evaluated to reduce urban nonpoint source pollutant loads to surface water during storm events. A pilot scale system was constructed and tested in the field and surface runoff samples were collected automatically according to pre-defined conditions. Nine rainfall events were tested and average removal efficiencies of TSS (Total Suspended Solid), TP (Total Phosphorus) and TN (Total Nitrogen) were evaluated as 87.4%, 75.3%, and 43.6%, respectively. Concentration and removal efficiency of pollutants were found to be affected by an amount of rainfall and rainfall intensities of the respective events. This seemed to be caused by the greater particulate fractions of first flushed samples than the samples collected in later time periods during the same rainfall events. The study showed that it is possible to remove a significant portion of the nonpoint source pollutant loads in initial rainfall runoff by using a simple settling process for TSS and TP without requiring additional power or chemicals.

Flow Analysis of Urban Combined Sewer by Personal Computer (개인 전산기를 이용한 도시합류관거의 흐름해석)

  • Jun, Byung Ho;Lee, Hyung Gee;Koo, Ja Kong;Shin, Hang Sik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.8 no.1
    • /
    • pp.127-140
    • /
    • 1988
  • The management of sewage and rainfall runoff becomes an emerging problem with the growth of urban communities. From the uncontrollable excess intensity or amount of rainfall, the conditions of sewer surcharge or manhole overflow could be generated in the combined sewer network where municipal or industrial wastewaters and rainfall runoff flow. The predictive model far the prevention of property and human life losses from this inundation was studied in this research. In the development of a mathematical flow model for the combined sewer surcharge and overflow, the Preissmann Slot concept and the four-point implicit method of finite difference were utilized. For the usage in personal computer, the overlapping segment method that required less memory storage was adopted. Through the simulation of hypothetical sewer network, the conservation of discharge volume was checked, and the usefulness of the Preissmann Slot was assured from the temporal distribution of discharge and depth along the sewer network. Also the possible field application for the correction of sewer diameters and slopes in the design of sewer network which has no surcharge/overflow condition was suggested.

  • PDF

Development of Moisture Loss Index Based on Field Moisture Measurement using Portable Time Domain Reflectometer (TDR) for Cold In-place Recycled Pavements (휴대용 TDR 함수량계로 측정한 현장 함수비를 이용한 현장 상온 재활용 아스팔트 포장의 수분 감소계수 개발)

  • Kim, Yong-Joo;Lee, Ho-Sin David;Im, Soo-Hyok
    • International Journal of Highway Engineering
    • /
    • v.13 no.2
    • /
    • pp.139-145
    • /
    • 2011
  • The practice of asphalt pavement recycling has grown rapidly over the decade, one of which is the cold in-place recycling with the foamed asphalt (CIR-foam) or the emulsified asphalt (CIR-emulsion). Particularly, in Iowa, the CIR has been widely used in rehabilitating the rural highways because it significantly increases the service life of the existing pavement. The CIR layer is typically overlaid by the hot mix asphalt (HMA) to protect it from water ingress and traffic load and obtain the required pavement structure and texture. Most public agencies have different curing requirements based on the number of curing days or the maximum moisture contents for the CIR before placing the overlay. The main objective of this study is to develop a moisture loss index that the public agency can use to monitor the moisture content of CIR layers in preparation for a timely placement of the wearing surface. First, the moisture contents were measured in the field using a portable time domain reflectometry (TDR) device. Second, the weather information in terms of rain fall, air temperature, humidity and wind speed was collected from the same location. Finally, a moisture loss index was developed as a function of initial moisture content, air temperature, humidity and wind speed. The developed moisture loss index based on the field measurements would help the public agency to determine an optimum timing of an overlay placement without continually measuring moisture conditions in the field.

Slope Stability by Variation of Rainfall Characteristic for Long Period (장기간 강우특성 변화에 따른 국내 사면의 안정성)

  • Lee, Jeong-Ju;Kim, Jae-Hong;Hwang, Young-Cheol
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.6
    • /
    • pp.51-59
    • /
    • 2014
  • Shallow landslides and debris flows are a common form of soil slope instability in South Korea. These events may be generally initiated as a result of intense rainfall or lengthening rainfall duration because of the effects of climate change. This paper presents the evaluation of rainfall-induced natural soil slope stability and reinforced soil slope instability under vertical load (railway or highway load) throughout South Korea based on quantitative analysis obtained from 58 sites rainfall observatories for 38 years. The slope stability was performed for infinite and geogrid-reinforced soil slopes by taking an average of maximum rainfall every ten years from 1973 to 2010. Seepage analysis is carried out on unsaturated soil slope using the maximum rainfall at each site, and then the factor of safety was calculated by coupled analysis using saturated and unsaturated strength parameters. The contour map of South Korea shows four stages in 10-year-time for the degree of landslide hazard. The safety factor map based on long term observational data will help prevent rainfall-induced soil slope instability for appropriate design of geotechnical structures regarding disaster protection.

Proposal of Design Method for Landslides Considering Antecedent Rainfall and In-situ Matric Suction (선행강우와 현장 모관흡수력을 고려한 산사태 해석 방법 제안)

  • Kim, Jung-Hwan;Jeong, Sang-Seom;Kim, Yong-Min;Lee, Kwang-Woo
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.12
    • /
    • pp.11-24
    • /
    • 2013
  • This study presents a design method for typical rainfall-induced landslide considering in-situ matric suction. Actual landslide data are used to validate the proposed method. The soil-water characteristic curve (SWCC) and unsaturated permeability are experimentally determined to estimate hydraulic properties of testing site. The field measurement of matric suction is carried out to monitor in-situ matric suction in a natural slope subjected to rainfall infiltration, which is incorporated in the landslide analysis. The wetting band depth and safety factor of the slope are assessed to clarify the effect of domestic rainfall pattern. Especially, the effect of antecedent rainfall on the slope stability is investigated and discussed in terms of wetting band depth using parametric study. It is found from the result of this study that proposed design method can consider the characteristic of unsaturated soil and effect of antecedent rainfall. The location of the scarp zone is fairly well predicted by proposed design method. Moreover, heavy rainfall, concentrated in the backward part with time, causes the lowest safety factor of the slope. These results demonstrate that decrease in matric suction due to antecedent rainfall may trigger slope instability. After the antecedent rainfall, additional rainfall may cause the slope failure due to increasing wetting band depth.