• 제목/요약/키워드: 설계휨모멘트

검색결과 283건 처리시간 0.019초

고강도강재 적용 플레이트 거더교의 휨 연성 평가 (Ductility of Plate Girder Bridges with High Performance Steel)

  • 주현성;차상호;최병호;이학은
    • 한국방재학회:학술대회논문집
    • /
    • 한국방재학회 2010년도 정기 학술발표대회
    • /
    • pp.83.1-83.1
    • /
    • 2010
  • 본 연구는 고강도 강재를 적용한 연속교 형식의 강교량에 대하여 연구를 수행하였다. 교량에 사용되는 주구조의 고강도화에 따로 연속교의 교각 부근 부모멘트부에는 정모멘트부에 비하여 큰 모멘트가 작용하게 된다. 또한 정모멘트 구간과 달리 상부플랜지에 인장력이 작용하게 되어 완공 후에도 극한 하중 상태에서 콘크리트 데크가 응력을 부담할 수 없게 된다. 이에 따라 하부 플랜지에 불안정 파괴가 발생할 가능성이 있으며 비합성 단면과 같은 방법으로 설계하게 된다. 또한 모멘트 재분배를 고려한 설계를 하기 위해서는 부모멘트부에 충분한 휨 연성이 필요하다. 고강도 강재를 적용한 교량은 일반강재를 적용한 교량에 비하여 휨연성이 감소하게 되므로 휨연성 확보를 위한 보강방안이 필요하다. 본 연구는 부모멘트부의 휨연성 향상을 휘하여 가로보의 부등 배치를 제안하였으며, 유한요소해석 결과 휨연성이 향상되었다.

  • PDF

KL-510 하중을 적용한 장지간 바닥판의 캔틸레버부 설계휨모멘트 (Design Bending Moment of Cantilever Slab for Long Span decks with KL-510 Load)

  • 정철헌;주상훈;이한주
    • 대한토목학회논문집
    • /
    • 제36권4호
    • /
    • pp.595-604
    • /
    • 2016
  • 본 연구에서는 현행 도로교설계기준의 KL-510 하중을 적용하여 장지간 바닥판의 내측 지간에 따른 캔틸레버 바닥판의 설계휨모멘트를 제안하였다. 장지간 바닥판의 내측 지간은 6.0~12.0m 범위를 대상으로 하였고, 캔틸레버 바닥판의 길이는 내측 지간의 30~50%를 적용하였다. 설계휨모멘트의 결정을 위해 바닥판의 직교이방성, 거더의 강성, 그리고 다차로재하계수의 영향을 반영하였으며, 이를 기존의 DB-24 하중에 대한 설계휨모멘트와 비교하였다.

KL-510 하중을 적용한 장지간 바닥판의 설계휨모멘트에 관한 연구 (A Study on the Design Bending Moments of Long Span Decks with KL-510 Load)

  • 정철헌;이한주;주상훈;안호현
    • 대한토목학회논문집
    • /
    • 제36권3호
    • /
    • pp.375-384
    • /
    • 2016
  • 현행, 도로교설계기준에서는 교량바닥판에 대해 지간이 짧은 다거더 플레이트 거더교 위주의 규정을 두고 있으며, 강합성 소수 거더교에 적용되는 장지간 바닥판에 대한 설계규정은 명확하게 없는 실정이다. 이는 소수 거더교의 장지간 바닥판에 적용하기에는 한계가 있으므로 합리적인 설계를 위해서는 관련 규정을 보완할 필요가 있다. 따라서, 본 연구에서는 내측부 교량바닥판의 지간 6.0~12.0m 범위를 대상으로 도로교설계기준의 KL-510 하중을 적용하여 교축방향(종방향)과 교축직각방향(횡방향)에 대한 설계휨모멘트를 제안하였다. 설계휨모멘트는 바닥판의 직교 이방성, 거더의 강성, 그리고 다차로재하계수의 영향이 반영되었으며, 이를 기존의 DB-24 하중에 대한 설계휨모멘트와 비교하였다.

HSB 강합성거더 정모멘트부의 휨저항강도 (Flexural Strength of Composite HSB Girders in Positive Moment)

  • 조은영;신동구
    • 한국강구조학회 논문집
    • /
    • 제22권4호
    • /
    • pp.389-398
    • /
    • 2010
  • 교량용 HSB 고성능 강재를 적용한 정모멘트부 강합성거더의 휨저항강도를 모멘트-곡률 해석법으로 산정하고 일반 강재에 적용되는 AASHTO LRFD 조밀단면 휨저항강도 설계식에 의한 휨저항강도와 비교하여 기존 설계식의 적용성을 검토하였다. 다양한 연성특성을 갖는 2,391개 단면을 임의추출법으로 선정하고 재료 비선형 모멘트-곡률 해석 프로그램을 이용하여 이들 단면에 대한 휨저항강도를 구하였다. 합성단면을 구성하는 콘크리트 재료는 CEB-FIP 모델로, HSB600 및 HSB800 강재는 탄소성-변형경화 재료로 모델링하였다. HSB 강재를 적용한 강합성거더 단면의 연성비와 콘크리트 바닥판의 압축강도에 따른 휨저항강도 특성을 분석하고 SM520-TMC 일반 강재를 적용한 경우와 휨저항강도를 비교하였다. 2,391개의 HSB600 강합성거더 단면의 휨저항강도를 분석한 결과, 기존 LRFD 휨저항강도 설계식을 적용할 수 있는 것으로 분석되었다. 반면에, HSB800 강재를 적용한 강합성거더의 경우에는 기존 LRFD 조밀단면 휨저항강도 설계식은 비안전측으로 평가되었으며, HSB800 강합성거더의 모멘트-곡률해석 결과에 근거한 새로운 정모멘트부 휨저항강도 산정식을 제안하였다.

HSB 강재 적용 강합성 복합단면 거더 정모멘트부의 휨저항강도 (Flexural Strength of Composite HSB Hybrid Girders in Positive Moment)

  • 조은영;신동구
    • 한국강구조학회 논문집
    • /
    • 제23권3호
    • /
    • pp.385-395
    • /
    • 2011
  • 교량용 HSB 고성능 강재를 적용한 정모멘트부 강합성 복합단면 거더의 휨저항강도를 모멘트-곡률 해석법으로 산정하고 LRFD 휨저항강도 설계식에 의한 휨저항강도와 비교하여 기존 설계식의 적용성을 검토하였다. 강거더의 하부플랜지는 HSB800 강재를 상부플랜지와 복부판은 HSB600 강재를 적용하였다. 다양한 연성특성을 갖는 6,205개 단면을 임의추출법으로 선정하고 재료 비선형 모멘트-곡률 해석 프로그램을 이용하여 이들 단면에 대한 휨저항강도를 구하였다. 합성단면을 구성하는 콘크리트 재료는 CEB-FIP 모델로, HSB600 및 HSB800 강재는 탄소성-변형경화 재료로 모델링하였으며 콘크리트 바닥판의 압축강도는 30MPa, 45MPa 및 60MPa를 고려하였다. HSB 강재를 적용한 강합성 복합단면 거더의 연성계수와 콘크리트 바닥판의 압축강도에 따른 휨저항강도 특성을 분석하였다. HSB 고성능강을 적용한 이종 복합단면 강합성 거더의 모멘트-곡률해석 결과, 현 AASHTO LRFD 정모멘트부 휨저항강도 산정식을 적용할 수 있는 것으로 평가되었다.

리브로 보강된 내진 철골 모멘트 접합부의 웅력전달 메커니즘 (Force Transfer Mechanism of Seismic Steel Moment Connections)

  • Lee, Chol-Ho;Lee, Jae-Kwang;Kwon, Keun-Tae
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.269-277
    • /
    • 2001
  • 본 연구에서는 리브로 보강된 내진 철골 모멘트 접합부의 응력전달 메커니즘을 검토하였다. 리브보강 접합부의 응력전달 메커니즘은 고전 휨이론에 의한 예측과 전혀 다르다. 일반적으로 구조 기술자가 리브를 사용할 경우 단면이차모멘트의 증가에 따른 휨응력의 감소효과를 기대하는 것이 보통이다. 그러나 리브는 구조기술자들이 통상 가정하는 휨응력 전달요소라기 보다는 리브 구배 방향의 스트럿 요소로 기능하여 휨응력 외에도 전달응력을 전달한다. 리브를 스트럿 요소로 파악할 때 응력전달 메커니즘을 올바로 파악할 수 있으며 이를 기초로 합리적 설계법의 정립이 가능하다.

  • PDF

철근 콘크리트 휨부재의 연성지수에 관한 해석적 연구 (Analytical Study on Ductility Index of Reinforced Concrete Flexural Members)

  • 이재훈
    • 대한토목학회논문집
    • /
    • 제14권3호
    • /
    • pp.391-402
    • /
    • 1994
  • 철근 콘크리트구조는 극한하중에서 연성파괴가 일어나도록 하는 것이 가장 중요한 설계개념의 하나이며 단면이 충분한 소성변형능력을 가지고 있을 때에는 한계상태설계법 개념을 도입하여 소성구조해석이나 모멘트 재분배를 수행하여 경제적인 단면을 설계할 수 있다. 따라서 휨연성지수는 설계된 철근 콘크리트 구조물의 휨거동을 예측하는데 뿐만 아니라 모멘트 재분배의 가능성을 판단하는데에도 이용된다. 그러나 휨연성지수 공식은 인장철근이 항복하는 순간의 곡률에 대하여 선형의 콘크리트 압축응력으로 가정하기 때문에 근사값의 휨연성지수를 계산하게 된다. 본 연구에서는 콘크리트와 철근의 응력-변형도 곡선을 이용한 수치해석으로 이론적 정해에 가까운 휨연성지수를 구하고 각 변수에 따른 휨연성지수의 변화와 공식의 오차, 복철근보의 최대철근량은 고찰함으로써 철근콘크리트 구조설계의 참고자료를 제공하고자 하며 모멘트 재분배에 관한 연구에 이용될 수 있는 철근 콘크리트 휨부재의 모멘트-곡률 곡선 모델을 제시하고자 한다.

  • PDF

FRP 보강 철근콘크리트 부재의 휨모멘트 (Moment Capacity of Reinforced Concrete Members Strengthened with FRP)

  • 조백순;김성도;백성용;최은수;최용주
    • 한국전산구조공학회논문집
    • /
    • 제23권3호
    • /
    • pp.315-323
    • /
    • 2010
  • FRP 보강단면의 공칭휨모멘트 산정에 강도설계법의 적용 타당성을 검토하기 위하여 5종류의 콘크리트 압축응력-변형률 모델을 적용하였으며, 컴퓨터 프로그램 언어를 이용하여 보강단면 휨해석을 실시하였다. 그 결과 보강단면의 휨해석에 콘크리트 압축응력-변형률 모델은 거의 영향을 미치지 않는 것으로 나타났다. 콘크리트 압축변형률이 0.003일 때, 휨해석으로 산정된 보강단면의 휨모멘트와 강도설계법으로 산정된 공칭휨모멘트는 거의 일치하는 것으로 나타났다. 그러나 보강단면의 인장철근비, FRP비, FRP 파단변형률, 콘크리트 압축변형률 등이 상대적으로 낮을수록, 강도설계법은 보강단면의 휨성능을 과대평가하는 것으로 해석결과에 나타났다.

FRP 시스템으로 보강한 철근콘크리트 부재의 휨 해석 (Flexural Analysis of Reinforced Concrete Members Strengthened with FRP Systems Based on Strength Method)

  • 조백순;김성도;정진환
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제10권2호
    • /
    • pp.175-186
    • /
    • 2006
  • FRP 시스템으로 보강된 철근콘크리트 단면 대부분이 철근콘크리트로 구성되어 있어 휨해석 및 휨설계를 직사각응력블록을 이용한 강도설계법에 의존하는 경향이 있다. 그러나, 보강단면의 인장철근 및 FRP시스템에 의한 인장력이 부족한 단면의 FRP 시스템의 변형률이 인장파단변형률을 초과하면 강도설계법을 적용할 수 없는 해석상 모순에 빠져든다. 인장철근과 탄소섬유시트에 의한 인장력이 낮은 탄소섬유시트 보강보 실험에서 콘크리트 최대압축변형률이 0.003보다 낮은 것으로 측정되었을 뿐 아니라 최대휨모멘트는 강도설계법으로 산정된 공칭휨모멘트보다 작은 것으로 측정되어, FRP 시스템 보강단면의 공칭휨모멘트 산정에 강도설계법의 적용한계가 있는 것으로 나타났다.

콘크리트 응력-변형률 관계에 기반한 철근콘크리트 부재의 처짐 산정 (Deflection Calculation Based on Stress-Strain Curve for Concrete in RC Members)

  • 최승원;김우
    • 대한토목학회논문집
    • /
    • 제30권4A호
    • /
    • pp.383-389
    • /
    • 2010
  • 현재 우리나라의 콘크리트구조설계기준은 강도설계법에 근간하고 있다. 강도설계법에 의해 휨부재를 설계할 경우, 콘크리트 응력-변형률 관계는 사용하중 상태에서 선형으로 가정하지만 이후 극한한계 상태까지에 대해서는 규정되어 있지 않다. 이로 인해 콘크리트구조설계기준에서는 처짐 및 균열폭 등의 산정에 대해 개별적인 규정을 두고 있다. 그러나 한계상태설계법에 근거한 EC에서는 재료에 대한 응력-변형률 관계를 규정하고 있다. 따라서 재료의 응력-변형률 관계로부터 휨강도 및 처짐 등을 직접 계산할 수 있다. 본 연구에서는 휨부재에 대하여 주어진 재료 모델을 바탕으로 평형방정식과 적합조건식을 적용하여 휨모멘트-곡률 관계를 계산하였다. 이로부터 휨강도 및 처짐을 산정하여 현행 콘크리트구조설계기준에 의한 값과 비교하였다. 해석 결과 재료 모델로부터 휨모멘트-곡률 관계를 통해 산정된 처짐은 실험 결과와도 비교적 잘 일치하고, 항복 이후의 처짐 계산도 가능한 것으로 나타났다.