• Title/Summary/Keyword: 설계알고리즘

Search Result 7,322, Processing Time 0.038 seconds

Calculation of future rainfall scenarios to consider the impact of climate change in Seoul City's hydraulic facility design standards (서울시 수리시설 설계기준의 기후변화 영향 고려를 위한 미래강우시나리오 산정)

  • Yoon, Sun-Kwon;Lee, Taesam;Seong, Kiyoung;Ahn, Yujin
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.6
    • /
    • pp.419-431
    • /
    • 2021
  • In Seoul, it has been confirmed that the duration of rainfall is shortened and the frequency and intensity of heavy rains are increasing with a changing climate. In addition, due to high population density and urbanization in most areas, floods frequently occur in flood-prone areas for the increase in impermeable areas. Furthermore, the Seoul City is pursuing various projects such as structural and non-structural measures to resolve flood-prone areas. A disaster prevention performance target was set in consideration of the climate change impact of future precipitation, and this study conducted to reduce the overall flood damage in Seoul for the long-term. In this study, 29 GCMs with RCP4.5 and RCP8.5 scenarios were used for spatial and temporal disaggregation, and we also considered for 3 research periods, which is short-term (2006-2040, P1), mid-term (2041-2070, P2), and long-term (2071-2100, P3), respectively. For spatial downscaling, daily data of GCM was processed through Quantile Mapping based on the rainfall of the Seoul station managed by the Korea Meteorological Administration and for temporal downscaling, daily data were downscaled to hourly data through k-nearest neighbor resampling and nonparametric temporal detailing techniques using genetic algorithms. Through temporal downscaling, 100 detailed scenarios were calculated for each GCM scenario, and the IDF curve was calculated based on a total of 2,900 detailed scenarios, and by averaging this, the change in the future extreme rainfall was calculated. As a result, it was confirmed that the probability of rainfall for a duration of 100 years and a duration of 1 hour increased by 8 to 16% in the RCP4.5 scenario, and increased by 7 to 26% in the RCP8.5 scenario. Based on the results of this study, the amount of rainfall designed to prepare for future climate change in Seoul was estimated and if can be used to establish purpose-wise water related disaster prevention policies.

Current status and future of insect smart factory farm using ICT technology (ICT기술을 활용한 곤충스마트팩토리팜의 현황과 미래)

  • Seok, Young-Seek
    • Food Science and Industry
    • /
    • v.55 no.2
    • /
    • pp.188-202
    • /
    • 2022
  • In the insect industry, as the scope of application of insects is expanded from pet insects and natural enemies to feed, edible and medicinal insects, the demand for quality control of insect raw materials is increasing, and interest in securing the safety of insect products is increasing. In the process of expanding the industrial scale, controlling the temperature and humidity and air quality in the insect breeding room and preventing the spread of pathogens and other pollutants are important success factors. It requires a controlled environment under the operating system. European commercial insect breeding facilities have attracted considerable investor interest, and insect companies are building large-scale production facilities, which became possible after the EU approved the use of insect protein as feedstock for fish farming in July 2017. Other fields, such as food and medicine, have also accelerated the application of cutting-edge technology. In the future, the global insect industry will purchase eggs or small larvae from suppliers and a system that focuses on the larval fattening, i.e., production raw material, until the insects mature, and a system that handles the entire production process from egg laying, harvesting, and initial pre-treatment of larvae., increasingly subdivided into large-scale production systems that cover all stages of insect larvae production and further processing steps such as milling, fat removal and protein or fat fractionation. In Korea, research and development of insect smart factory farms using artificial intelligence and ICT is accelerating, so insects can be used as carbon-free materials in secondary industries such as natural plastics or natural molding materials as well as existing feed and food. A Korean-style customized breeding system for shortening the breeding period or enhancing functionality is expected to be developed soon.

4D Printing Materials for Soft Robots (소프트 로봇용 4D 프린팅 소재)

  • Sunhee Lee
    • Fashion & Textile Research Journal
    • /
    • v.24 no.6
    • /
    • pp.667-685
    • /
    • 2022
  • This paper aims to investigate 4D printing materials for soft robots. 4D printing is a targeted evolution of the 3D printed structure in shape, property, and functionality. It is capable of self-assembly, multi-functionality, and self-repair. In addition, it is time-dependent, printer-independent, and predictable. The shape-shifting behaviors considered in 4D printing include folding, bending, twisting, linear or nonlinear expansion/contraction, surface curling, and generating surface topographical features. The shapes can shift from 1D to 1D, 1D to 2D, 2D to 2D, 1D to 3D, 2D to 3D, and 3D to 3D. In the 4D printing auxetic structure, the kinetiX is a cellular-based material design composed of rigid plates and elastic hinges. In pneumatic auxetics based on the kirigami structure, an inverse optimization method for designing and fabricating morphs three-dimensional shapes out of patterns laid out flat. When 4D printing material is molded into a deformable 3D structure, it can be applied to the exoskeleton material of soft robots such as upper and lower limbs, fingers, hands, toes, and feet. Research on 4D printing materials for soft robots is essential in developing smart clothing for healthcare in the textile and fashion industry.

Development of Market Growth Pattern Map Based on Growth Model and Self-organizing Map Algorithm: Focusing on ICT products (자기조직화 지도를 활용한 성장모형 기반의 시장 성장패턴 지도 구축: ICT제품을 중심으로)

  • Park, Do-Hyung;Chung, Jaekwon;Chung, Yeo Jin;Lee, Dongwon
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.4
    • /
    • pp.1-23
    • /
    • 2014
  • Market forecasting aims to estimate the sales volume of a product or service that is sold to consumers for a specific selling period. From the perspective of the enterprise, accurate market forecasting assists in determining the timing of new product introduction, product design, and establishing production plans and marketing strategies that enable a more efficient decision-making process. Moreover, accurate market forecasting enables governments to efficiently establish a national budget organization. This study aims to generate a market growth curve for ICT (information and communication technology) goods using past time series data; categorize products showing similar growth patterns; understand markets in the industry; and forecast the future outlook of such products. This study suggests the useful and meaningful process (or methodology) to identify the market growth pattern with quantitative growth model and data mining algorithm. The study employs the following methodology. At the first stage, past time series data are collected based on the target products or services of categorized industry. The data, such as the volume of sales and domestic consumption for a specific product or service, are collected from the relevant government ministry, the National Statistical Office, and other relevant government organizations. For collected data that may not be analyzed due to the lack of past data and the alteration of code names, data pre-processing work should be performed. At the second stage of this process, an optimal model for market forecasting should be selected. This model can be varied on the basis of the characteristics of each categorized industry. As this study is focused on the ICT industry, which has more frequent new technology appearances resulting in changes of the market structure, Logistic model, Gompertz model, and Bass model are selected. A hybrid model that combines different models can also be considered. The hybrid model considered for use in this study analyzes the size of the market potential through the Logistic and Gompertz models, and then the figures are used for the Bass model. The third stage of this process is to evaluate which model most accurately explains the data. In order to do this, the parameter should be estimated on the basis of the collected past time series data to generate the models' predictive value and calculate the root-mean squared error (RMSE). The model that shows the lowest average RMSE value for every product type is considered as the best model. At the fourth stage of this process, based on the estimated parameter value generated by the best model, a market growth pattern map is constructed with self-organizing map algorithm. A self-organizing map is learning with market pattern parameters for all products or services as input data, and the products or services are organized into an $N{\times}N$ map. The number of clusters increase from 2 to M, depending on the characteristics of the nodes on the map. The clusters are divided into zones, and the clusters with the ability to provide the most meaningful explanation are selected. Based on the final selection of clusters, the boundaries between the nodes are selected and, ultimately, the market growth pattern map is completed. The last step is to determine the final characteristics of the clusters as well as the market growth curve. The average of the market growth pattern parameters in the clusters is taken to be a representative figure. Using this figure, a growth curve is drawn for each cluster, and their characteristics are analyzed. Also, taking into consideration the product types in each cluster, their characteristics can be qualitatively generated. We expect that the process and system that this paper suggests can be used as a tool for forecasting demand in the ICT and other industries.

Verifying Execution Prediction Model based on Learning Algorithm for Real-time Monitoring (실시간 감시를 위한 학습기반 수행 예측모델의 검증)

  • Jeong, Yoon-Seok;Kim, Tae-Wan;Chang, Chun-Hyon
    • The KIPS Transactions:PartA
    • /
    • v.11A no.4
    • /
    • pp.243-250
    • /
    • 2004
  • Monitoring is used to see if a real-time system provides a service on time. Generally, monitoring for real-time focuses on investigating the current status of a real-time system. To support a stable performance of a real-time system, it should have not only a function to see the current status of real-time process but also a function to predict executions of real-time processes, however. The legacy prediction model has some limitation to apply it to a real-time monitoring. First, it performs a static prediction after a real-time process finished. Second, it needs a statistical pre-analysis before a prediction. Third, transition probability and data about clustering is not based on the current data. We propose the execution prediction model based on learning algorithm to solve these problems and apply it to real-time monitoring. This model gets rid of unnecessary pre-processing and supports a precise prediction based on current data. In addition, this supports multi-level prediction by a trend analysis of past execution data. Most of all, We designed the model to support dynamic prediction which is performed within a real-time process' execution. The results from some experiments show that the judgment accuracy is greater than 80% if the size of a training set is set to over 10, and, in the case of the multi-level prediction, that the prediction difference of the multi-level prediction is minimized if the number of execution is bigger than the size of a training set. The execution prediction model proposed in this model has some limitation that the model used the most simplest learning algorithm and that it didn't consider the multi-regional space model managing CPU, memory and I/O data. The execution prediction model based on a learning algorithm proposed in this paper is used in some areas related to real-time monitoring and control.

AN ORBIT PROPAGATION SOFTWARE FOR MARS ORBITING SPACECRAFT (화성 근접 탐사를 위한 우주선의 궤도전파 소프트웨어)

  • Song, Young-Joo;Park, Eun-Seo;Yoo, Sung-Moon;Park, Sang-Young;Choi, Kyu-Hong;Yoon, Jae-Cheol;Yim, Jo-Ryeong;Kim, Han-Dol;Choi, Jun-Min;Kim, Hak-Jung;Kim, Byung-Kyo
    • Journal of Astronomy and Space Sciences
    • /
    • v.21 no.4
    • /
    • pp.351-360
    • /
    • 2004
  • An orbit propagation software for the Mars orbiting spacecraft has been developed and verified in preparations for the future Korean Mars missions. Dynamic model for Mars orbiting spacecraft has been studied, and Mars centered coordinate systems are utilized to express spacecraft state vectors. Coordinate corrections to the Mars centered coordinate system have been made to adjust the effects caused by Mars precession and nutation. After spacecraft enters Sphere of Influence (SOI) of the Mars, the spacecraft experiences various perturbation effects as it approaches to Mars. Every possible perturbation effect is considered during integrations of spacecraft state vectors. The Mars50c gravity field model and the Mars-GRAM 2001 model are used to compute perturbation effects due to Mars gravity field and Mars atmospheric drag, respectively. To compute exact locations of other planets, JPL's DE405 ephemerides are used. Phobos and Deimos's ephemeris are computed using analytical method because their informations are not released with DE405. Mars Global Surveyor's mapping orbital data are used to verify the developed propagator performances. After one Martian day propagation (12 orbital periods), the results show about maximum ${\pm}5$ meter errors, in every position state components(radial, cross-track and along-track), when compared to these from the Astrogator propagation in the Satellite Tool Kit. This result shows high reliability of the developed software which can be used to design near Mars missions for Korea, in future.

Ontology-based User Customized Search Service Considering User Intention (온톨로지 기반의 사용자 의도를 고려한 맞춤형 검색 서비스)

  • Kim, Sukyoung;Kim, Gunwoo
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.4
    • /
    • pp.129-143
    • /
    • 2012
  • Recently, the rapid progress of a number of standardized web technologies and the proliferation of web users in the world bring an explosive increase of producing and consuming information documents on the web. In addition, most companies have produced, shared, and managed a huge number of information documents that are needed to perform their businesses. They also have discretionally raked, stored and managed a number of web documents published on the web for their business. Along with this increase of information documents that should be managed in the companies, the need of a solution to locate information documents more accurately among a huge number of information sources have increased. In order to satisfy the need of accurate search, the market size of search engine solution market is becoming increasingly expended. The most important functionality among much functionality provided by search engine is to locate accurate information documents from a huge information sources. The major metric to evaluate the accuracy of search engine is relevance that consists of two measures, precision and recall. Precision is thought of as a measure of exactness, that is, what percentage of information considered as true answer are actually such, whereas recall is a measure of completeness, that is, what percentage of true answer are retrieved as such. These two measures can be used differently according to the applied domain. If we need to exhaustively search information such as patent documents and research papers, it is better to increase the recall. On the other hand, when the amount of information is small scale, it is better to increase precision. Most of existing web search engines typically uses a keyword search method that returns web documents including keywords which correspond to search words entered by a user. This method has a virtue of locating all web documents quickly, even though many search words are inputted. However, this method has a fundamental imitation of not considering search intention of a user, thereby retrieving irrelevant results as well as relevant ones. Thus, it takes additional time and effort to set relevant ones out from all results returned by a search engine. That is, keyword search method can increase recall, while it is difficult to locate web documents which a user actually want to find because it does not provide a means of understanding the intention of a user and reflecting it to a progress of searching information. Thus, this research suggests a new method of combining ontology-based search solution with core search functionalities provided by existing search engine solutions. The method enables a search engine to provide optimal search results by inferenceing the search intention of a user. To that end, we build an ontology which contains concepts and relationships among them in a specific domain. The ontology is used to inference synonyms of a set of search keywords inputted by a user, thereby making the search intention of the user reflected into the progress of searching information more actively compared to existing search engines. Based on the proposed method we implement a prototype search system and test the system in the patent domain where we experiment on searching relevant documents associated with a patent. The experiment shows that our system increases the both recall and precision in accuracy and augments the search productivity by using improved user interface that enables a user to interact with our search system effectively. In the future research, we will study a means of validating the better performance of our prototype system by comparing other search engine solution and will extend the applied domain into other domains for searching information such as portal.

Analysis of the Characteristics of the Seismic source and the Wave Propagation Parameters in the region of the Southeastern Korean Peninsula (한반도 남동부 지진의 지각매질 특성 및 지진원 특성 변수 연구)

  • Kim, Jun-Kyoung;Kang, Ik-Bum
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.2 no.1 s.4
    • /
    • pp.135-141
    • /
    • 2002
  • Both non-linear damping values of the deep and shallow crustal materials and seismic source parameters are found from the observed near-field seismic ground motions at the South-eastern Korean Peninsula. The non-linear numerical algorithm applied in this study is Levenberg-Marquadet method. All the 25 sets of horizontal ground motions (east-west and north-south components at each seismic station) from 3 events (micro to macro scale) were used for the analysis of damping values and source parameters. The non-linear damping values of the deep and shallow crustal materials were found to be more similar to those of the region of the Western United States. The seismic source parameters found from this study also showed that the resultant stress drop values are relatively low compared to those of the Western United Sates. Consequently, comparisons of the various seismic parameters from this study and those of the United States Seismo-tectonic data suggest that the seismo-tectonic characteristics of the South eastern Korean Peninsula is more similar to those of the Western U.S.

Development of a Small Gamma Camera Using NaI(T1)-Position Sensitive Photomultiplier Tube for Breast Imaging (NaI (T1) 섬광결정과 위치민감형 광전자증배관을 이용한 유방암 진단용 소형 감마카메라 개발)

  • Kim, Jong-Ho;Choi, Yong;Kwon, Hong-Seong;Kim, Hee-Joung;Kim, Sang-Eun;Choe, Yearn-Seong;Lee, Kyung-Han;Kim, Moon-Hae;Joo, Koan-Sik;Kim, Byuug-Tae
    • The Korean Journal of Nuclear Medicine
    • /
    • v.32 no.4
    • /
    • pp.365-373
    • /
    • 1998
  • Purpose: The conventional gamma camera is not ideal for scintimammography because of its large detector size (${\sim}500mm$ in width) causing high cost and low image quality. We are developing a small gamma camera dedicated for breast imaging. Materials and Methods: The small gamma camera system consists of a NaI (T1) crystal ($60 mm{\times}60 mm{\times}6 mm$) coupled with a Hamamatsu R3941 Position Sensitive Photomultiplier Tube (PSPMT), a resister chain circuit, preamplifiers, nuclear instrument modules, an analog to digital converter and a personal computer for control and display. The PSPMT was read out using a standard resistive charge division which multiplexes the 34 cross wire anode channels into 4 signals ($X^+,\;X^-,\;Y^+,\;Y^-$). Those signals were individually amplified by four preamplifiers and then, shaped and amplified by amplifiers. The signals were discriminated ana digitized via triggering signal and used to localize the position of an event by applying the Anger logic. Results: The intrinsic sensitivity of the system was approximately 8,000 counts/sec/${\mu}Ci$. High quality flood and hole mask images were obtained. Breast phantom containing $2{\sim}7 mm$ diameter spheres was successfully imaged with a parallel hole collimator The image displayed accurate size and activity distribution over the imaging field of view Conclusion: We have succesfully developed a small gamma camera using NaI(T1)-PSPMT and nuclear Instrument modules. The small gamma camera developed in this study might improve the diagnostic accuracy of scintimammography by optimally imaging the breast.

  • PDF

Social Tagging-based Recommendation Platform for Patented Technology Transfer (특허의 기술이전 활성화를 위한 소셜 태깅기반 지적재산권 추천플랫폼)

  • Park, Yoon-Joo
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.3
    • /
    • pp.53-77
    • /
    • 2015
  • Korea has witnessed an increasing number of domestic patent applications, but a majority of them are not utilized to their maximum potential but end up becoming obsolete. According to the 2012 National Congress' Inspection of Administration, about 73% of patents possessed by universities and public-funded research institutions failed to lead to creating social values, but remain latent. One of the main problem of this issue is that patent creators such as individual researcher, university, or research institution lack abilities to commercialize their patents into viable businesses with those enterprises that are in need of them. Also, for enterprises side, it is hard to find the appropriate patents by searching keywords on all such occasions. This system proposes a patent recommendation system that can identify and recommend intellectual rights appropriate to users' interested fields among a rapidly accumulating number of patent assets in a more easy and efficient manner. The proposed system extracts core contents and technology sectors from the existing pool of patents, and combines it with secondary social knowledge, which derives from tags information created by users, in order to find the best patents recommended for users. That is to say, in an early stage where there is no accumulated tag information, the recommendation is done by utilizing content characteristics, which are identified through an analysis of key words contained in such parameters as 'Title of Invention' and 'Claim' among the various patent attributes. In order to do this, the suggested system extracts only nouns from patents and assigns a weight to each noun according to the importance of it in all patents by performing TF-IDF analysis. After that, it finds patents which have similar weights with preferred patents by a user. In this paper, this similarity is called a "Domain Similarity". Next, the suggested system extract technology sector's characteristics from patent document by analyzing the international technology classification code (International Patent Classification, IPC). Every patents have more than one IPC, and each user can attach more than one tag to the patents they like. Thus, each user has a set of IPC codes included in tagged patents. The suggested system manages this IPC set to analyze technology preference of each user and find the well-fitted patents for them. In order to do this, the suggeted system calcuates a 'Technology_Similarity' between a set of IPC codes and IPC codes contained in all other patents. After that, when the tag information of multiple users are accumulated, the system expands the recommendations in consideration of other users' social tag information relating to the patent that is tagged by a concerned user. The similarity between tag information of perferred 'patents by user and other patents are called a 'Social Simialrity' in this paper. Lastly, a 'Total Similarity' are calculated by adding these three differenent similarites and patents having the highest 'Total Similarity' are recommended to each user. The suggested system are applied to a total of 1,638 korean patents obtained from the Korea Industrial Property Rights Information Service (KIPRIS) run by the Korea Intellectual Property Office. However, since this original dataset does not include tag information, we create virtual tag information and utilized this to construct the semi-virtual dataset. The proposed recommendation algorithm was implemented with JAVA, a computer programming language, and a prototype graphic user interface was also designed for this study. As the proposed system did not have dependent variables and uses virtual data, it is impossible to verify the recommendation system with a statistical method. Therefore, the study uses a scenario test method to verify the operational feasibility and recommendation effectiveness of the system. The results of this study are expected to improve the possibility of matching promising patents with the best suitable businesses. It is assumed that users' experiential knowledge can be accumulated, managed, and utilized in the As-Is patent system, which currently only manages standardized patent information.