• Title/Summary/Keyword: 설계시험평가

Search Result 1,945, Processing Time 0.03 seconds

An Experimental Study of the Fatigue Specimen for the Typical Structural Details of the Steel Bridge (강교량의 표준적 구조상세에 대한 실험적 연구)

  • Chung, Yeong Wha;Jo, Jae Byung;Bae, Doo Byong;Jung, Kyoung Sup;Woo, Sang Ik
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.5 s.48
    • /
    • pp.463-473
    • /
    • 2000
  • This paper presents the results of the experimental and analytical investigation for the fatigue strength of welded details frequently used in steel bridges, especially for the details with relatively lower fatigue strength. The welded details included four kinds of welded details corresponding to the categories C, D, E and E' which represent the flange attachment details, web attachment details, transverse stiffeners and cover-plate details. Tensile fatigue tests were performed. The test results were compared with other available test results and the fatigue criteria of AASHTO, JSSC and Eurocode specifications. Generally, our test results were well agreed with other test results and satisfied with above-mentioned fatigue design provisions. However, it was found that transversely loaded weld-details showed lower fatigue strength than longitudinally loaded weld-details in transverse stiffener detail, and the test results of those details were not satisfied with AASHTO fatigue provisions. Examining the effect of length of gusset plate attachment details, welded details with longer attachment showed relatively lower fatigue strength, especially for the out-of-plane gusset plate details. It is recommended to perform additional fatigue tests with various loading and detail parameters and to establish the more detailed fatigue categories such as Eurocode or JSSC

  • PDF

High-Temperature Structural-Analysis Model of Process Heat Exchanger for Helium Gas Loop (I) (헬륨가스루프 시험용 공정열교환기에 대한 고온구조해석 모델링 (I))

  • Song, Kee-Nam;Lee, Heong-Yeon;Kim, Yong-Wan;Hong, Seong-Duk;Park, Hong-Yoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.9
    • /
    • pp.1241-1248
    • /
    • 2010
  • In large-scale production of hydrogen, a PHE (Process Heat Exchanger) is a key component because the heat required to carry out the Sulfur-Iodine chemical reaction that yields hydrogen is transferred from a VHTR (Very High Temperature Reactor) by the PHE. Korea Atomic Energy Research Institute established a helium gas loop for conducting performance test of components that are used in the VHTR. In this study, as a part of high-temperature structural-integrity evaluation of a designed PHE prototype that is scheduled to be tested in the helium gas loop, we carried out high-temperature structural-analysis modeling, thermal analysis, and thermal-expansion analysis for the designed PHE prototype. An appropriate constraint condition is proposed at the end of the in-flow and out-flow pipelines of the primary and secondary coolants and the proposed constraint condition will be applied to the design of the performance-test loop setup for the designed PHE prototype.

An Experimental Study for the Shear Property and the Temperature Dependency of Seismic Isolation Bearings (지진격리받침의 전단특성 및 온도의존성에 대한 실험적 연구)

  • Cho, Chang-Beck;Kwahk, Im-Jong;Kim, Young-Jin
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.12 no.1
    • /
    • pp.67-77
    • /
    • 2008
  • Seismic isolation has been studied continuously as a solution of the seismic engineering to reduce the sectional forces and the damages of structures caused by earthquakes. To certify reliable design and installation of the seismic isolation systems, seismic isolation bearings should be fabricated under well planned quality control process, and proper evaluation tests for their seismic performance should be followed. In this study, shear property evaluation tests for the lead rubber bearings(LRB) and the rubber bearings(RB) were implemented and the temperature dependency tests were also implemented to evaluate the changes of shear properties according to the changes of temperature. After evaluation tests, the measured shear properties were compared to their design values and their deviation was analyzed comparing with the allowable error ranges specified in Highway Bridge Design Specifications. These results showed that a considerable number of isolation bearings have so large deviations from their design values that their error ranges were over or very close to the allowable ranges. And the test results for temperature dependency showed that the shear properties of isolation bearings would be changed in great degree by the change of temperature during their service period. If these two types of changes in their shear properties are superposed, it would possible that the changes of shear properties from their original design values are over than 50%.

Evaluation of Consolidation Characteristics Considering the Mixed Gradation Ratio of Soft Ground (연약지반의 입도 혼합비를 고려한 압밀특성평가)

  • Park, Yeong-Mog;Yun, Sang-Jong;Chea, Jong-Gil
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.10
    • /
    • pp.99-110
    • /
    • 2009
  • In order to provide the design criteria, the characteristics of consolidation for soft ground improvement have been investigated using the field banking test performed by the vertical drain method at the northern container section in Busan New Port. Field test results indicated that the estimated degree of consolidation in design stage decreased by about 7% compared with the measured one. This difference is attributed to the fact that the conservative geological properties were applied with relatively high amount of maximum clay mixture ratio during the design stage. Based on this findings, another laboratory oedometer test was implemented to consider various combination of mixture ratio. It was found that the consolidation degree increased in accordance with the increase of sand/silt mixture ratio. Also, the proportion of 10%, 50%, and 40% for sand, silt, and clay, respectively, was observed as the best combination of mixture ratio to the actual measurement, which is very similar to the average grain size distribution in the banking test area. Therefore, it is suggested that the overall geological characteristics as well as the grain size distribution should be considered in design stage to improve the soft ground that contains mixture of sand, silt, and clay.

Evaluation of Performance of Grouts and Pipe Sections for Closed-loop Vertical Ground Heat Exchanger by In-situ Thermal Response Test (현장 열응답 시험을 통한 수직 밀폐형 지중열교환기용 그라우트와 열교환 파이프 단면의 성능 평가)

  • Lee, Chul-Ho;Park, Moon-Seo;Min, Sun-Hong;Choi, Hang-Seok;Sohn, Byong-Hu
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.7
    • /
    • pp.93-106
    • /
    • 2010
  • In performing a series of in-situ thermal response tests, the effective thermal conductivities of six vertical closed-loop ground heat exchangers were experimentally evaluated and compared one another, which were constructed in a test bed in Wonju. To compare thermal efficiency of the ground heat exchangers in field, the six boreholes were constructed with different construction conditions: grouting materials (cement vs. bentonite), different additives (silica sand vs. graphite) and the shape of pipe-sections (general U-loop type vs. 3 pipe-type). From the test results, it can be concluded that cement grouting has a higher effective thermal conductivity than bentonite grouting, and the efficiency of graphite better performs than silica sand as a thermally-enhancing addictive. In addition, a new 3 pipe-type heat exchanger provides less thermal interference between the inlet and outlet pipe than the conventional U-loop type heat exchanger, which results in superior thermal performance. Based on the results from the in-situ thermal response tests, a series of economic analyses have been made to show the applicability of the new addictives and 3 pipe-type heat exchanger.

Physical Properties Evaluation of Porous Concrete according to Target Porosity and Pumice Contents Ratio for Application of the Aquatic Environment (수계환경 적용을 위한 설계공극률 및 부석 혼입률에 따른 포러스콘크리트의 물리적 특성 평가)

  • Kim, Woo-Suk;Park, Jae-Roh;Kim, Bong-Kyun;Seo, Dae-Seuk;Park, Jun-Seok
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.6
    • /
    • pp.703-711
    • /
    • 2016
  • The present study is mainly aimed at securing adequate pores which are applicable to the aquatic environment and satisfying the required strength of porous concrete as a structure by substituting pumice for crushed stone which is usually used for the fabrication of porous concrete. Accordingly, in order to deduce the optimum mixing conditions applicable to the aquatic environment, we sought to evaluate the porosity, coefficient of permeability and compressive strength of porous concrete based on the target porosity and the mixing factors for pumice. By examining the porosity and coefficient of permeability of porous concrete and the physical properties of its compressive strength based on the target porosity and the mixing factors for pumice, it is judged that the optimum mixtures for porous concrete applicable to the aquatic environment which satisfy both the necessity of securing adequate pores and the required strength for porous concrete as a structure are PC I I-10-0, PC I I-10-5 and PC I I-10-10.

A Study on Hydraulic Characteristics of Permeable Rock Fractures in Deep Rock Aquifer Using Geothermal Gradient and Pumping Test Data (지온경사와 양수시험 자료를 활용한 심부 암반대수층 투수성 암반균열의 수리특성 연구)

  • Hangbok Lee;Cholwoo Lee;Eui-Seob Park
    • Tunnel and Underground Space
    • /
    • v.34 no.4
    • /
    • pp.312-329
    • /
    • 2024
  • In various underground research projects such as energy storage and development and radioactive waste disposal targeting deep underground, the characteristics of permeable rock fractures that serve as major pathway of groundwater flow in deep rock aquifer are considered as an important evaluation factor in the design, construction, and operation of research facilities. In Korea, there is little research and database on the location and hydraulic characteristics of permeable rock fractures and the pattern of groundwater flow patterns that may occur between fractures in deep rock boreholes. In this paper, the hydraulic characteristics of permeable rock fractures in deep rock aquifer were evaluated through the analysis of geothermal gradient and pumping test data. First, the deep geothermal distribution was identified through temperature logging, and the geothermal gradient was obtained through linear regression analysis using temperature data by depth. In addition, the hydraulic characteristics of the fractured rock were analyzed using outflow temperature obtained from pumping tests. Ultimately, the potential location and hydraulic characteristics of permeable rock fractures, as well as groundwater flow within the boreholes, were evaluated by integrating and analyzing the geophysical logging and hydraulic testing data. The process and results of the evaluation of deep permeable rock fractures proposed in this study are expected to serve as foundational data for the successful implementation of underground research projects targeting deep rock aquifers.

Development of a Test Rig with Hydraulic Circuit for the Front Axle Suspension System of an Agricultural Tractor (농용트랙터 전방차축 현가장치를 위한 유압회로 시험기 개발)

  • Lee, Jung-Hwan;Cho, Bong-Jin;Kim, Hak-Jin;Koo, Kang-Mo;Ki, In-Hyun
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2017.04a
    • /
    • pp.71-71
    • /
    • 2017
  • 농용트랙터의 운전자는 작업, 주행으로 인한 유해한 저주파 진동에 장시간 노출된다. 이에 따라 운전자에게 전달되는 노면 진동을 감소시켜주기 위한 전방차축 현가장치의 역할이 커지고 있다. 트랙터의 전방차축 현가장치는 주로 유압식으로 설계되어 있으며 이를 구성하는 유압요소 선정이 현가장치의 성능에 중요한 영향을 미친다. 하지만, 실제와 유사한 조건에서 트랙터 차체 무게만큼 큰 부하를 제공하여 유압회로의 성능을 실험하는 것은 비용과 시간 측면에서 비효율적이다. 본 연구에서는 이를 대체하기 위하여 개별 유압요소의 성능을 테스트 할 수 있는 현가장치 유압회로 요인 시험기를 설계제작 하였다. 이를 이용하여 개별 부품의 성능곡선을 센서를 이용 측정하였고 얻은 특성값을, 구성한 유압 시뮬레이션 모델에 반영하여 실제조건의 유압특성을 얻을 수 있는 유효한 시뮬레이션 모델 개발에 활용하였다. 또한, 실험실 환경에서 유압식 현가장치를 간소화 시킨 형태로 유압회로의 성능을 예비시험해 볼 수 있도록 다양한 센서를 장착 데이터를 취득할 수 있도록 하였다. 개발한 요인 시험기는 하부에 설치된 가진 실린더를 이용하여 상부에 설치된 현가장치 실린더의 스트로크 변위와 속도에 따른 힘을 측정할 수 있도록 구성하였다. 이를 위해 현가장치 실린더의 헤드부와 로드부에 각각 압력센서를 설치하였으며 헤드부, 로드부의 압력 차이와 로드셀을 이용해 측정한 가진 실린더의 힘의 관계를 확인하였다. 상부의 현가 실린더 장치는 복동 형태로 제작되어 헤드부, 로드부 양쪽 방향으로 유량이 흐를 수 있도록 설계되었다. 이를 이용해 헤드부와 로드부 사이에 어큐뮬레이터, 가변 오리피스, 릴리프 밸브 등으로 유압회로를 구성하였으며 어큐뮬레이터 용량에 따른 힘의 변화, 가변 오리피스의 개도량에 따라서 전달되는 힘의 크기 등을 측정하였다. 하부의 가진 실린더는 사인파, 삼각파, 계단 입력, DC 레벨 등의 신호를 발생시킬 수 있도록 제작되었다. 신호의 주파수는 0~4Hz, 범위에서 사용자가 조절할 수 있도록 설정되었으며 계단응답 성능 측정 시험을 평가한 결과 정상상태오차는 0.470mm~0.536mm, 입상시간은 0.194초~0.202초, 정착시간은 0.230초~0.421초로 나타났다.

  • PDF

Estimation of Absorbing Capacity from Rockfall Protection Fences (도로 낙석방지울타리의 낙석지지능력 평가 연구)

  • Hwang, Young-Cheol
    • Journal of the Korean GEO-environmental Society
    • /
    • v.3 no.4
    • /
    • pp.59-66
    • /
    • 2002
  • Designs for rockfall protection systems must consider rock and soil types, the angle of the slope, conditions on top and the toe of the affected area. Rockfall protection fence is installed to block for falling rock from cut slopes and this is one of the most common rockfall protection measures. The capability of the fence is provided that sum of capability of poly vinyl chloride coated wire mesh, steel support and wire rope respectively. But in some case, the rockfall protection fence was not supported rockfall energy less than total capability of the fence through the full scale rockfall tests. Therefore, the objectives of this paper are to indicate the problems of fence capability and to improve the design specifications for the fence.

  • PDF

Electromagnetic Field Uniformity Characteristics of a Triangular Reverberation Chamber with Schroeder Diffusers (Schroeder 확산기를 적용한 삼각형 전자파 잔향실의 필드 균일도 특성)

  • 김성철;이중근
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.4
    • /
    • pp.373-378
    • /
    • 2002
  • This paper presents the results of an electromagnetic field uniformity of a triangular reverberation chamber that can be used alternatively for analysis and measurement of electromagnetic interference and immunity test. Equilateral triangular reverberation chamber and Schroeder diffusers were designed and fabricated for this purpose. FDTD simulation method was applied to analyze the field distribution inside of two different types of reverberation chambers. As a result, the electromagnetic field uniformity was improved inside of triangular reverberation chambers, and the measured field uniformity was improved by 1 ∼4 ㏈ compared to the ones without diffusers.