• Title/Summary/Keyword: 설계변수

Search Result 5,679, Processing Time 0.032 seconds

Feasibility Appraisal and Proposal of a Pile Driving Formula for Domestic Pre-bored Pile Management (국내 매입 말뚝 관리를 위한 항타공식 활용 가능성 평가 및 제안에 관한 연구)

  • Kim, Gunwoong;Seo, Seunghwan;Kim, Juhyong;Chung, Moonkyung
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.11
    • /
    • pp.71-84
    • /
    • 2023
  • In accordance with Korean structural foundation design standards, dynamic or static load tests are mandated for 1 to 3% of total piles. The construction quality of the remaining 97% to 99% of piles is determined through penetration measurements. This study aims to enhance the quality control of the majority of piles by adopting a pile driving formula that considers both penetration and hammer energy. The current challenge lies in adapting existing overseas driving formulas to the domestic site conditions, characterized by shallow weathered or soft rocks, and the prevalent use of pre-bored piles. To address this, the Modified Gates formula was refined using domestic dynamic load data, thereby improving its applicability to pile management. Despite employing fewer variables, the proposed formula demonstrates a comparable accuracy to dynamic loading tests in predicting the bearing capacity of pre-bored piles. Consequently, this formula holds promise for practical use in future pile quality management.

Remote work during the COVID-19 pandemic and perception of indoor environment: a focus on acoustic environment (코로나19 팬데믹 기간 재택근무 경험자의 실내환경 인식: 음환경을 중심으로)

  • Sang Hee Park;Hye-kyung Shin;Kyoung-woo Kim
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.6
    • /
    • pp.627-636
    • /
    • 2023
  • Due to the COVID-19 pandemic, the global population has experienced drastic changes, one of which is the increase in remote work. Given the ongoing possibility of exposure to infectious diseases and various other circumstances, the expansion of remote work is anticipated. To enhance the efficiency of remote work and address its existing limitations, this study surveyed the perceptions of indoor environments among individuals who worked from home during the COVID-19 pandemic. The study examined how the characteristics of individuals influenced their perceptions of indoor environments. It was found that the number of occupants and rooms, size of the house, and noise sensitivity affected the perceptions of outdoor noise, neighbor noise, and indoor noise caused by cohabitants. The findings can be used as foundational data for designing multipurpose housing that can be utilized not only for residential purposes but also for work and educational settings in the future.

A Study on the Optimization of Temperature Deviation of Loads in Smart Reefer Container (스마트냉동컨테이너의 적재부 온도 편차 최적화에 관한 연구)

  • SangWon Park;TaeHoon Kim;DoMyung Park;DongSeop Han
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.28 no.6
    • /
    • pp.83-90
    • /
    • 2023
  • In a reefer container, temperature deviation occurs between the front of the loading part with the refrigerator and the rear of the loading part with the container door due to the external environment. In particular, this temperature deviation in the transport of fresh cargo has a great influence on the freshness of the cargo. In this study, we propose a method to minimize the temperature deviation by partially shielding the T-Floor to reduce the temperature deviation and evaluating the effect of the T-Floor shielding rate on the temperature change of the reefer container loading part. The subject of the experiment was a 40 feet smart reefer container, and the T-Floor shielding rates were set to 0%, 50%, 60%, 70%, and 80%. As a result of the experiment, it occurred differently in the temperature deviation of the reefer container loading part according to the shielding rate, and it was confirmed that the temperature deviation was the most uniform when the shielding rate was 60%. By minimizing the temperature deviation of the loading part, it is possible to prevent corruption and cold damage of cargo during transportation of fresh cargo by using the smart reefer container.

Virtual Influencers in Advertising: Examining the Effect of Social Exclusion and Parasocial Relationship (가상 인플루언서 광고효과 연구: 사회적 배제의 조절효과 및 준사회적 관계의 매개효과 고찰)

  • Wei Yan Wang;Hongmin Ahn
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.6
    • /
    • pp.1073-1080
    • /
    • 2023
  • This study aims to explore the psychological factors influencing the persuasive effect of virtual influencers, with a specific focus on the impact of social exclusion. Additionally, it examines the mediating effect of parasocial relationships on advertising effectiveness. To achieve these goals, the study conducted an experiment using a 2 (influencer type: human vs. virtual human) × 2 (social exclusion: social exclusion vs. social acceptance) between-group factorial design. The results revealed that consumers who experienced social exclusion exhibited more positive attitudes toward the influencer and the product, higher intentions to purchase the product, and a greater willingness to share or recommend it, especially when the influencer was a real human (vs. a virtual influencer). These moderating effects were found to be mediated by parasocial relationships.

A Study on the Shock Resistance against Underwater Explosion of Ship-born Vertical Launch Type Air-vehicle by Using the Modeling and Simulation (모델링 및 시뮬레이션 기반의 함정용 수직발사형 발사체의 수중폭발 충격에 대한 내충격성 확보 방안 연구)

  • Seungjin Lee;Jeongil Kwon;Kyeongsik You;Jinyong Park
    • Journal of the Korea Society for Simulation
    • /
    • v.32 no.4
    • /
    • pp.1-10
    • /
    • 2023
  • This study examines the response when the shock by underwater explosion is transmitted to a vertical launch air-vehicle mounted on a ship using modeling and simulation, and is about a plan to increase method shock resistance to protect the air vehicle. In order to obtain an accurate mathematical model, a dynamic characteristic test was performed on similar equipment, and through this, the mathematical model could be supplemented. And, using the supplemented mathematical model, the air vehicle simulated the shock response by the underwater explosion specified in the BV043 standard. As a result of the first simulation, it was confirmed that air vehicle could not withstand shock, and air vehicle protection method using a ring spring type shock absorber was studied. In addition to the basic shape of abosber, it was confirmed that the ring spring absober can be used to increase the impact resistance of a shipborn vertical launch vehicle by performing simulations for each case by changing deseign varables.

Optimization-based model correlation of satellite payload structure (위성 탑재체 구조물의 최적화 기반 모델 보정)

  • Do-hee Yoon
    • Journal of Aerospace System Engineering
    • /
    • v.18 no.2
    • /
    • pp.104-116
    • /
    • 2024
  • A satellite is ultimately verified by performing a coupled load analysis with the launch vehicle. To increase the accuracy of the coupled load analysis results, it is important to have good accuracy of the finite element model. Therefore, finite element model correlation is essential. In general, model correlation is performed by changing the material properties and thickness one by one, but this process takes a lot of time and cost. The current paper proposes an efficient model correlation method using optimization. Significant variables were selected through analysis of variance, and the time and cost required for analysis and optimization were reduced by using the Kriging surrogate model. The method proposed in this paper can be applied only with the vibration test results, and it has a great advantage in terms of efficiency in that it can significantly reduce the numerical calculation cost and time required.

Design of a Neuro-Fuzzy System Using Union-Based Rule Antecedent (합 기반의 전건부를 가지는 뉴로-퍼지 시스템 설계)

  • Chang-Wook Han;Don-Kyu Lee
    • The Transactions of the Korea Information Processing Society
    • /
    • v.13 no.2
    • /
    • pp.13-17
    • /
    • 2024
  • In this paper, union-based rule antecedent neuro-fuzzy controller, which can guarantee a parsimonious knowledge base with reduced number of rules, is proposed. The proposed neuro-fuzzy controller allows union operation of input fuzzy sets in the antecedents to cover bigger input domain compared with the complete structure rule which consists of AND combination of all input variables in its premise. To construct the proposed neuro-fuzzy controller, we consider the multiple-term unified logic processor (MULP) which consists of OR and AND fuzzy neurons. The fuzzy neurons exhibit learning abilities as they come with a collection of adjustable connection weights. In the development stage, the genetic algorithm (GA) constructs a Boolean skeleton of the proposed neuro-fuzzy controller, while the stochastic reinforcement learning refines the binary connections of the GA-optimized controller for further improvement of the performance index. An inverted pendulum system is considered to verify the effectiveness of the proposed method by simulation and experiment.

Predicting Changes in Restaurant Business District by Administrative Districts in Seoul using Deep Learning (딥러닝 기반 서울시 행정동별 외식업종 상권 변화 예측)

  • Jiyeon Kim;Sumin Oh;Minseo Park
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.2
    • /
    • pp.459-463
    • /
    • 2024
  • Frequent closures among self-employed individuals lead to national economic losses. Given the high closure rates in the restaurant industry, predicting changes in this sector is crucial for business survival. While research on factors affecting restaurant industry survival is active, studies predicting commercial district changes are lacking. Thus, this study focuses on forecasting such alterations, designing a deep learning model for Seoul's administrative district commercial district changes. It collects 2023 and 2022 second-quarter variables related to these changes, converting yearly fluctuations into percentages for augmentation. The proposed deep learning model aims to predict commercial district changes. Future policies, considering this study, could support restaurant industry growth and economic development.

Design Optimization of Automotive Rear Cross Member with Cold-rolled Ultra High Strength Steel (냉연 초고강도강 적용 차량용 리어 크로스 멤버 형상 설계 변수 최적화)

  • J. Y. Kim;S. H. Kim;D. H. Choi;S. Hong
    • Transactions of Materials Processing
    • /
    • v.33 no.2
    • /
    • pp.103-111
    • /
    • 2024
  • With the increasing global interest in carbon neutrality, the automotive industry is also transitioning to the production of eco-friendly cars, specifically electric vehicles. In order to achieve comparable driving distances to internal combustion engine vehicles, the application of high-capacity battery packs has led to an increase in vehicle weight. To achieve light-weighting and durability requirements of automotive components simultaneously, there is a demand for research on the application of Ultra-High Strength Steel (UHSS). However, when manufacturing chassis components using UHSS, there are challenges related to fracture defects due to lower elongation compared to regular steel sheets, as well as spring-back issues caused by high tensile strength. In this study, a simulated specimen that is not affected by the property changes of four materials was designed to improve formability of the rear cross member, which is the most challenging automotive chassis component. The influence and correlation of material-specific variables were analyzed through finite element analysis (FEA) for each material with tensile strength of 440, 590, 780, and 980 MPa grades, resulting in the development of a predictive equation. To validate the equation, the simulated specimens of 980 MPa grade were produced from the test molds. Then the reliability of the FEA and predictive equation was verified with measured specimen data using a 3D scanner. The results of this study can be proposed to improve the formability of UHSS chassis components in future researches.

Behavior of RC Beams Strengthened with Carbon Fiber SheetsUnder Repeated Loading (단조 반복하중 하의 탄소섬유시트 보강 RC보의 거동에 관한 연구)

  • Park, Jeong Yong;Kim, Seong Do;Cho, Baik Soon;Cheung, Jin Hwan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.4
    • /
    • pp.183-193
    • /
    • 2006
  • This study deals with the response of reinforced concrete beams strengthened with carbon fiber sheets. Test beams are subjected to static loading and repeated loading. Based on the static test results of the RC beams strengthened with carbon fiber sheets, repeated loading tests are performed. The variables of repeated loading test are composed of the number of carbon fiber sheets, the existence of U-shaped band at the end for anchoring, and loading rate of repeated loading, etc. Test results show the flexural behavior, the characteristics of strength, the characteristics of ductility, the change of flexural rigidity, and the amount of energy loss of RC beams under monotonic incremental loading and repeated loading. The failure strain of carbon fiber sheets is also estimated under repeated loading. From the experimental results, this work presents a basis of the data needed to analyze and design the static and dynamic flexural response of RC beams strengthened with carbon fiber sheets.