DOI QR코드

DOI QR Code

A Study on the Optimization of Temperature Deviation of Loads in Smart Reefer Container

스마트냉동컨테이너의 적재부 온도 편차 최적화에 관한 연구

  • 박상원 (동아대학교 스마트물류연구센터) ;
  • 김태훈 (동아대학교 스마트물류연구센터) ;
  • 박도명 (동아대학교 스마트물류연구센터) ;
  • 한동섭 (동아대학교 산업공학과)
  • Received : 2023.12.04
  • Accepted : 2023.12.18
  • Published : 2023.12.31

Abstract

In a reefer container, temperature deviation occurs between the front of the loading part with the refrigerator and the rear of the loading part with the container door due to the external environment. In particular, this temperature deviation in the transport of fresh cargo has a great influence on the freshness of the cargo. In this study, we propose a method to minimize the temperature deviation by partially shielding the T-Floor to reduce the temperature deviation and evaluating the effect of the T-Floor shielding rate on the temperature change of the reefer container loading part. The subject of the experiment was a 40 feet smart reefer container, and the T-Floor shielding rates were set to 0%, 50%, 60%, 70%, and 80%. As a result of the experiment, it occurred differently in the temperature deviation of the reefer container loading part according to the shielding rate, and it was confirmed that the temperature deviation was the most uniform when the shielding rate was 60%. By minimizing the temperature deviation of the loading part, it is possible to prevent corruption and cold damage of cargo during transportation of fresh cargo by using the smart reefer container.

냉동컨테이너는 외부 환경에 의해 냉동기가 있는 적재부의 전면과 컨테이너 문이 있는 적재부의 후면부 사이에 온도 편차가 발생한다. 특히, 신선화물 운송에서 이러한 온도 편차는 화물의 신선도에 큰 영향을 미치게 된다. 본 연구에서는 온도 편차를 줄이기 위해 T-Floor를 부분적으로 차폐하고, T-Floor 차폐율이 냉동컨테이너 적재부 온도 변화에 미치는 영향을 평가하여 온도 편차를 최소화하는 방법을 제안한다. 실험 대상은 40 feet 스마트 냉동컨테이너로 T-Floor 차폐율은 0%, 50%, 60%, 70%, 80%로 설계 변수를 설정하였다. 실험 결과, 차폐율에 따라 냉동컨테이너 적재부의 온도 편차가 다르게 발생하였으며, 차폐율 60%인 경우 온도 편차가 가장 균일한 것을 확인했다. 이러한 적재부 온도 편차 최소화를 통해 스마트 냉동컨테이너를 이용하여 신선 화물의 운송 시 화물의 부패 및 냉해를 예방할 수 있다.

Keywords

Acknowledgement

이 논문은 2023년 해양수산부 재원으로 해양수산과학기술진흥원의 지원을 받아 수행된 연구임(20210154, 스마트컨테이너 실용화 기술개발 사업)

References

  1. A. Kan, T. Wang, D. Zhu. and D. Cao. (2021). The characteristics of cargo temperature rising in reefer container under refrigeration-failure condition. International Journal of Refrigeration, 123, 1-8. https://doi.org/10.1016/j.ijrefrig.2020.12.007
  2. Choi. D. H. and Park. D. H. (2023). Analysis of factors affecting air freight rates using text mining: focusing on the L.A. and Frankfurt routes, Journal of the Korea Industrial Information Systems Research, 28(3), 69-87. http://dx.doi.org/10.9723/jksiis.2023.28.3.069
  3. G. S. Han. (2010). A Study Situation Analysis and Improvement Strategies for Logistics System of Perishable Foods in Korea, Korean journal of food marketing economics, vol.27, no.2, pp. 67-104.
  4. Getahun, S., Ambaw, A., Delele, M. Chris J. M. and Umezuruike L. O. (2018). Experimental and Numerical Investigation of Airflow Inside Refrigerated Shipping Containers. Food Bioprocess Technol 11, 1164-1176 https://doi.org/10.1007/s11947-018-2086-5
  5. J. W. Choi., J. H. Lee., H. J. Lee., K. J. Son. and Y. P. Hong. (2014). Effect of Precooling and Functional Film Packaging on Postharvest Quality of Oriental Melon, Korean Journal of Horticultural Science & Technology, vol.2014, no.5, pp. 98-98.
  6. Lukasse, L. and Staal, M. G. (2016). Optimizing air flow distribution in maritime refrigerated containers. (Report / Wageningen UR Food & Biobased Research; No. 1621). Wageningen UR Food & Biobased Research.
  7. Lukasse, L. J. S. Staal, M. G. and Wissink, E. B. (2019). An airflow enhancing floor cover to improve temperature uniformity in maritime refrigerated containers. Paper presented at The 25th IIR International Congress of Refrigeration, Montreal, Canada. https://doi.org/10.18462/iir.icr.2019.0054
  8. Lee. S. H., Park. S. H., Lee. S. J., Lee. H. W., Yu. S. Y. and Lee. K. G. (2022). A Comparative Study on the Methodology of Failure Detection of Reefer Containers Using PCA and Feature Importance, Korea Convergence Society, 13(3), 23-31. https://doi.org/10.15207/JKCS.2022.13.03.023
  9. Lee. T. M., Kim. Y. S. and Kim. D. W. (2023). A Study on the BLE Signal Variation in the Smart Container Environment, The Journal of Korean Institute of Information Technology, 21(11), 133-141. http://dx.doi.org/10.14801/jkiit.2023.21.11.133
  10. S. Getahun., A. Ambaw., M. Delele., Chris J. Meyer. and U. L. Opara. (2017). Analysis of airflow and heat transfer inside fruit packed refrigerated shipping container: Part I -Model development and validation, Journal of Food Engineering, pp 58-68. https://doi.org/10.1016/j.jfoodeng.2017.02.010
  11. S. Senguttuvan, J. S. Youn, J. H. Park, J. K. Lee. and S. M. Kim, (2020). Enhanced airflow in a refrigerated container by improving the refrigeration unit design, International Journal of Refrigeration, Volume 120, pp 460-473. https://doi.org/10.1016/j.ijrefrig.2020.08.019
  12. Y. S. Moon., S. J. Park., J. W. Jung., H. R. Choi. and J. J. Kim. (2017). Temperature Control Algorithm for Reefer Container, Journal of the Korea Institute of Information and Communication Engineering 21(12): 2380-2386. https://doi.org/10.6109/jkiice.2017.21.12.238