• Title/Summary/Keyword: 선회속도

Search Result 134, Processing Time 0.037 seconds

Development and Lab-scale Plant Study of Coagulation Sedimentation Module using Cyclone (선회류를 이용한 응집침전모듈의 개발 및 실증 연구)

  • Moon, Jinyoung;Cho, Young-Gun;Song, Seung-Jun;Kim, Jin-Han
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.5
    • /
    • pp.3336-3344
    • /
    • 2014
  • The purpose of this study is small scale coagulation module is developed and demonstrated through a lab-scale test. Recent as a sewage treatment rate increases, have heightened the interest in the necessity on the nonpoint source and developing a small processing unit has been increased. Coagulation sedimentation module in this study is additional growth of floc through swirling in the outside zone, reduction of microstructure floc number and the internal settling zone through vertical/level flow complex sedimentation method after the coagulation process precipitation method as an effective high separation efficiency can be divided was also assessed. Coagulation sedimentation module can increase the load factor was 4.4 times compared to conventional clarifier base on the same volume and surface area through vertical/level flow. In this study, this process was selected formation and maintenance of swirling and uniform flow distribution in the internal settling zone as an important design factor, to derive its FLUENT was used to characteristics of the flow model. Through the simulation of swirling, influent velocity, dimensions of external basin, hopper depth of bottom cone was determined and through analysis of velocity distribution, flow distribution detailed specifications are derived like as diameter and number of effluent hole. Lab-scale($120{\ell}/hr$) test results, influent of 300~800 NTU to less than 10 NTU without polymer feeding was able to operate in the 20minutes retention time(surface loading rate $37.3m^3/m^2$-day), and through analysis FLUENT the possibility of using design parameters were derived.

Development of a Precision BLDC Servo Position Controller for Composite Smoke Bomb Azimuth Driving System (복합연막탄 선회구동장치를 위한 정밀 BLDC 서보 위치 제어기 개발)

  • Koo, Bon-Min;Choi, Sung-Jin;Choi, Jung-Keyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.3
    • /
    • pp.467-472
    • /
    • 2006
  • This study has been done to design a precise system and develop position control algorithm to control a Composite Smoke Bomb Azimuth driving apparatus of a BLDC servo motor. Having to Blind the sight of opposite tank. the Smoke Bomb Rotational driving system needs instant response that is able to detect opponent appearance and blast the bomb at a short time. So a design that shows fast current response capability or $300[Hz]\sim500[Hz]$ is proposed. in the MIN-MAX PWM technology is used to increase the operational speed. in order to control the blasting position, a precision position control algorithm that utilizes the integral value of speed trajectory is suggested. Also these characteristics are monitored and assessed by the PC based monitoring program which shows the graphs of current, voltage, position, and speed parameters. The main controller is based on a TMS320VC33 high performance floating-point DSP(Digital Signal Process) and the PWM generator utilizes EPM7128 CPLD.

Analysis of Fluid Flows in a High Rate Spiral Clarifier and the Evaluation of Field Applicability for Improvement of Water Quality (고속 선회류 침전 장치의 유동 해석 및 수질 개선을 위한 현장 적용 가능성 평가)

  • Kim, Jin Han;Jun, Se Jin
    • Journal of Wetlands Research
    • /
    • v.16 no.1
    • /
    • pp.41-50
    • /
    • 2014
  • The purpose of this study is to evaluate the High Rate Spiral Clarifier(HRSC) availability for the improvement of polluted retention pond water quality. A lab scale and a pilot scale test was performed for this. The fluid flow patterns in a HRSC were studied using Fluent which is one of the computational fluid dynamic(CFD) programs, with inlet velocity and inlet diameter, length of body($L_B$) and length of lower cone(Lc), angle and gap between the inverted sloping cone, the lower exit hole installed or not installed. A pilot scale experimental apparatus was made on the basis of the results from the fluid flow analysis and lab scale test, then a field test was executed for the retention pond. In the study of inside fluid flow for the experimental apparatus, we found out that the inlet velocity had a greater effect on forming spiral flow than inlet flow rate and inlet diameter. There was no observable effect on forming spiral flow LB in the range of 1.2 to $1.6D_B$(body diameter) and Lc in the range of 0.35 to $0.5L_B$, but decreased the spiral flow with a high ratio of $L_B/D_B$ 2.0, $Lc/L_B$ 0.75. As increased the angle of the inverted sloping cone, velocity gradually dropped and evenly distributed in the inverted sloping cone. The better condition was a 10cm distance of the inverted sloping cone compared to 20cm to prevent turbulent flow. The condition that excludes the lower exit hole was better to prevent channeling and to distribute effluent flow rate evenly. From the pilot scale field test it was confirmed that particulate matters were effectively removed, therefore, this apparatus could be used for one of the plans to improve water quality for a large water body such as retention ponds.

Maneuvering Target Tracking With 3D Variable Turn Model and Kinematic Constraint (3D 가변 선회 모델 및 기구학적 구속조건을 사용한 기동표적 추적)

  • Kim, Lamsu;Lee, Dongwoo;Bang, Hyochoong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.11
    • /
    • pp.881-888
    • /
    • 2020
  • In this paper, research on estimation of states of a target of interest using Line Of Sight(LOS) angle measurement is performed. Target's position, velocity, and acceleration are chosen to be the states of interests. The LOS measurement is known to be highly non-linear, making target dynamic modeling hard to be implemented into a filter. To solve this issue, the Pseudomeasurement equation was applied to the LOS measurement equation. With the help of this equation, 3D variable turn target dynamic model is applied to the filter model. For better performance, Kinematic Constraint is also implemented into the filter model. As for the filter, Bias Compensation Pseudomeasurement Filter (BCPMF) is used which is known for its robustness to initial conditions. Moreover, Two-Stage Kalman Filter (TSKF) form was also implemented to benefit from the parallel computation. As a result, TBCPMF 3DVT-KC is proposed and simulated to assess performance.

Numerical Simulation of Swirl Effect on the Flow Fields and Spray Characteristics in Direct Injection Engine (적접분사 엔진의 유동장 및 분무특성에 미치는 선회비의 영향에 대한 수치해석적 연구)

  • Hong, K.B.;Kim, H.S.;Yang, H.C.;Ryou, H.S.
    • Journal of the Korean Society of Safety
    • /
    • v.10 no.3
    • /
    • pp.120-129
    • /
    • 1995
  • Since the rate and completeness of combustion in direct injection engines were controlled by the characteristics of gas flow fields and sprays, an understanding of those was essential to the design of the direct injection engines. In this study the numerical simulations of swirl effects on the characteristics of gas flow fields and sprays were performed using the spray model that could predict the interactions between gas fields and spray droplets. The governing equations were discretized by the finite volume method and the modified k- e model which included the compressibility effects due to the compression/expansion of piston was used. The results of numerical calculation of the spray characteristics in the quiescent environment were compared with the experimental data. There were good agreements between the results of calculation and the experimental data, except in the early stages of spray. In the motoring condition, the results showed that a substantial air entrainment into the spray volume was emerged and hence the squish motion was relatively unimportant during fuel injection periods. As the swirl ratio increased, the evaporation rate was increased due to the wide dispersion of the spray droplets and the strong interaction between spray droplets and gas fields.

  • PDF

The property change of rotating stall in one-stage axial compressor according to rotor's rotating speed variation (동익 회전속도 변화에 따른 1단 축류 압축기 선회실속의 특성변화 연구)

  • Choi, Minsuk;Baek, Je-Hyun
    • 유체기계공업학회:학술대회논문집
    • /
    • 2002.12a
    • /
    • pp.258-263
    • /
    • 2002
  • A numerical analysis using 2-D unsteady compressible program is conducted to explain characteristics of rotating stall such as rotating speed and number of stall cells in an one-stage axial compressor. Unlike an axial compressor which has only a rotor, in one-stage axial compressor a rotating stall is generated by rotor/stator interaction and tack pressure rising without any artificial disturbance and modeling. As a back pressure is raised, the separation of suction side at blades is increased uniformly, but because of the discrepancy of blockage effect by stator, the disturbances are generated to form a stall cell. Once the stall cell is formed, regularly the stall cell are rotating through rotor blades. When the speed of rotor is design speed the rotating speed of stall cell is $83.3\%$ of rotor rotating speed. When the speed of rotor is $80\%$ of design speed, the speed of rotating stall is $88.2\%$ of rotor speed. The number of generated stall cell are also varied for rotor speed and back pressure.

  • PDF

Numerical Simulation of Turbulent Flows in Inlet Duct of Heat Recovery Steam Generator (배열회수 안내덕트 내부의 난류유동 수치시뮬레이션)

  • Kwag, Seung-Hyun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.6
    • /
    • pp.809-813
    • /
    • 2011
  • Turbulent flows are numerically simulated in the three dimensional inlet duct for heat recovery steam generator. The present study is aimed to analyze the effect of a variation in turbulent flow pattern by the change of roof angle in the transition duct. The finite volume based Navier-Stokes equations with unstructured grids are solved to make clear the flow dynamic phenomena. Reviews are made on with the data of path lines, velocity vectors, dynamic pressure, residuals for numerical convergence and so on. The k-epsilon, k-omega, Reynolds stress and RNG k-epsilon are used for generation of turbulence. Two types of roof angle are applied with and without the swirl in the duct. Turbulent flow patterns could be investigated for the optimum duct design based on the computational results.

Effects of Swirl on Flame Development and Late Combustion Characteristic in a High Speed Single-Shot Visualized SI Engine (고속 단발 가시화 스파크 점화 엔진에서의 연소 특성에 대한 선회효과 연구)

  • Kim, S.S.;Kim, S.S.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.1
    • /
    • pp.54-64
    • /
    • 1995
  • The effects of swirl on early flame development and late combustion characteristic were investigated using a high speed single-shot visualized 51 engine. LDV measurements were performed to get better understanding of the flow field in this combustion chamber. Spark plugs were located at half radius (R/2) and central location of bore. High speed schlieren photographs at 20,000 frames/sec were taken to visualize the detailed formation and development of the flame kernel with cylinder pressure measurements. This study showed that high swirl gave favorable effects on combustion-related performances in terms of the maximum cylinder pressure and flame growth rate regardless of spark position. However, at R/2 ignition the low swirl shown desirable effects at low engine speed gave worse performances as engine speed increased than without swirl. There were distinct signs of slow-down in flame growth during the period when the flame front expanded from 2.5mm in radius until it reached 5.0mm apparently due to the presence of ground electrode. There seemed to be heat transfer effect on the flame expansion speed which was evidenced in high swirl case by the slowdown of the late flame front presumably caused by relatively large heat loss from burned gas to wall compared with low- or no-swirl cases.

  • PDF

Optimal Weight Design of Rotor-Bearing Systems Considering Whirl Natural Frequency and Stability (선회 고유진동수와 안정성을 고려한 회전자-베어링 시스템의 중량 최적설계)

  • 이동수;손윤호;최동훈
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.3
    • /
    • pp.639-646
    • /
    • 1995
  • The objective of this study is to minimize the weight of a damped anisotropic roto-bearing system considering whirl natural frequency and stability. The system is modeled as an assemblage of rigid disks, flexible shafts and discrete bearings. The system design variables are the crosssectional areas of shaft elements and the properties of bearings. To analyze the system, the polynomial method which is derived by rearranging the calculations performed by a transfer matrix method is adopted. For the optimization, the optimization software IDOL (Integrated Design Optimization Library) which is based on the Augmented Lagrange Multiplier (ALM) method is employed. Also, an analytical design sensitivity analysis of the system is used for high accuracy and efficiency. To demonstrate the usefulness of the proposed optimal design program incorporating analysis, design sensitivity analysis, and optimization modules, a damped anisotropic rotor-bearing system is optimized to obtain 34$ weight reduction.

A Study of Two-Phase Swirl Spray Characteristics on Dual Airblast Velocity Ratio (이중공기공급 속도비에 따른 이류체 선회분무 특성 연구)

  • Kang, S.J.;Oh, J.H.;Song, K.J.;Rho, B.J.
    • Journal of ILASS-Korea
    • /
    • v.5 no.3
    • /
    • pp.27-36
    • /
    • 2000
  • In this study, spray characteristics of a dual airblast atomizer are addressed. Three dimensional characteristics of a dual airblast atomizer with air swirl are measured to provide the significant data. The liquid flow rate was fixed at 0.06 kg/min, and atomizing air was controlled at the liquid-air mass ratio of 4.0. The performance of the spray with co-swirl and counter-swirl flow was investigated at each point in the developed spray region using a three-component phase Doppler particle analyzer. This instrument was also used to evaluate the concentration profiles. The three dimensional mean velocity were investigated of present flow characteristics of the dual airblast atomizer. In addition, drop size distributions, mean droplet size profile, and droplet concentration were analyzed to understand atomization characteristics. This experimental results can be conveniently utilized for the preliminary design of gas turbine engines for aircraft.

  • PDF