• Title/Summary/Keyword: 선회성

Search Result 333, Processing Time 0.039 seconds

A Study on Angle of Heel in Turning using Ship Maneuverability lndices (선박 조종성 지수를 이용한 선회 중 횡경사에 관한 기초연구)

  • Kim, Hong-Beom;Yim, Jeong-Bin
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2019.11a
    • /
    • pp.269-269
    • /
    • 2019
  • The ships are turning for the purpose of collision avoidence and change of course. It is possible that ships have capsizing accident when improper loading of cargo and excessive use rudder angle in turning. It is difficult for navigation officers to recognize the danger of heeling during a turn, because the dynamic state of the ship changes in real time. Thus, in this study, ship's heeling angle was predicted during turning using the maneuverability indices estimated from the ship's autopilot. The maneuverability indices estimated through the Kalman filter of Autopilot is real-time predictable. The turning radius was obtained from the estimated Index of turining ability and calculations of the heeling angle were possible in turning. It is intended to be used as a basic data on the prevention of danger heeling angle during turning.

  • PDF

A Study on the Ship's Performance of T.S. HANBADA(III) - The Evaluation of Maneuvering Performance with Actual Ship Trials - (실습선 한바다호의 운항성능에 관한 연구(III) - 실선시험을 통한 조종성능 평가 -)

  • Jung, Chang-Hyun;Lee, Hyong-Ki;Kong, Gil-Yong
    • Journal of Navigation and Port Research
    • /
    • v.32 no.6
    • /
    • pp.439-445
    • /
    • 2008
  • Various turning tests were carried out according to the rudder angle, turning direction, and the speed etc. with the ship's maneuverability measuring system on the training ship HANBADA. After that they were compared with each other on the turning circle, maneuvering performance index and the distance of new course, and then found out that they were satisfied with the IMO maneuvering standards. And the turning circles of port were smaller than those of starboard with all the rudder angles and maneuvering indexes such as K and T were relatively bigger than other vessels. Also, the distance cf new course was measured to $125{\sim}300m$ in case of the new course on $30^{\circ}{\sim}90^{\circ}$. All of these results will be helpful to escape from collision and to alter course on coastal voyage.

실습선 아라호(A-RA)의 조종성능에 관한 연구

  • 안영화;박명호;최찬문;정용진
    • Proceedings of the Korean Society of Fisheries Technology Conference
    • /
    • 2001.10a
    • /
    • pp.73-74
    • /
    • 2001
  • 선박의 조종성능은 풍조나 파랑등 외력에 의한 영향이나 그 선박의 홀수, 속력등 항행환경에 따라서 조종성능이 달라 질 뿐만 아니라 조타에 대한 선체의 응답운동이 달라지게 된다. 따라서, 조선자는 선박이 항행중 다른 선박이나 위험물에 접근 했을 때 안전하게 피항하기 위해서는 그 선박에 대한 선회성과 추종성 등 조타에 의한 조종 성능을 잘파악하고 있어야 하며, 이러한 조종 성능은 일반적으로 선회시 선회권에 의한 종거 및 횡거와 선회경의 크기로 결정되는 선회성과 조타에 의한 선체운동등 추종성을 나타내는 조종성 지수로써 그 선박에 대한 조종성능의 양부를 판별하게 되는 것이다. (중략)

  • PDF

A Study on the Stability of a Low Freeboard Coastwise Tanker Capsized in Turning (2) -Experimental Examination of the Outward Heel Moment Induced by Flooding of Seawater onto the Deck- (선회중 전복한 저건현 내항 탱커의 복원성에 관한 연구 (2) -갑판상 해수 침입이 경사 모멘트에 미치는 영향에 대한 실험적 조사 -)

  • Lee, Yun-Sok;Kim, Chol-Seong;Lee, Sang-Min
    • Journal of Navigation and Port Research
    • /
    • v.27 no.5
    • /
    • pp.465-471
    • /
    • 2003
  • A coastwise chemical tanker sailing at full speed has capsized during turning in calm water. In the previous paper, we investigated the reasons of the accident by demonstrating the proper correction for the free surface effect of the liquid cargo and the bow-sinkage effect. In this paper, we also carry out model experiments of a transverse pressure under the seawater and an outward heel moment according to the heel angle and rudder angle, on the basis of radius of turning circle, ship's speed and drift angle of model ship occurring in turning. It is also shown that the flooding of seawater onto the deck occurring in turning generated a significant outward heel moment and increased the vertical distance between the center of gravity of the ship and the center of lateral water drag.

선회조기감지시스템 활용방안에 관한 연구

  • Jeong, Chang-Hyeon;Park, Yeong-Su;Lee, Yun-Seok;Gong, Gil-Yeong
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2014.06a
    • /
    • pp.120-122
    • /
    • 2014
  • 선박의 조타기 작동 신호를 AIS를 통하여 전달함으로써 상대선박의 변침의도를 신속히 파악하여 충돌위험을 피할 수 있는 선회조기감지시스템을 구현하고 실선실험을 통하여 그 실효성을 검증하였다. 또한, 실선실험을 통해 선박의 타각정보가 AIS를 통해 송 수신이 가능하다는 것을 확인하였으며, ECDIS에 표시된 타각정보는 주변선박의 충돌회피에 크게 기여할 것으로 판단된다. 선회조기감지시스템은 선박의 안전운항을 위한 정보 제공의 필요성, 선박 통항량 증가 및 고속화 등으로 인한 위험성 증대로 VTS관제의 역할이 더욱 중요시 되고 있는 상황에서 선박의 조타각이 표시된 해당 시스템을 활용할 경우 변침상황을 보다 신속히 파악할 수 있으므로 관제가 보다 쉬워질 것으로 예상된다. 또한, 선박의 침몰이나 VDR의 소실로 인한 해양사고 분석의 어려움도 AIS를 통한 조타신호가 저장된 해양안전종합정보시스템(GICOMS)의 분석을 통해 다소 해소될 것으로 판단된다.

  • PDF

A Study on the Maneuverabilities of the Training ship M.S. A-RA (실습선 아라호(M.S. A-RA)의 조종성능에 관한 연구)

  • 안영화;박명호;최환문;정용진
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.37 no.4
    • /
    • pp.275-284
    • /
    • 2001
  • The for this study, turning circle tests and maneuvering indices were conducted to study and evaluate the maneuverabilities of the fishery training ship M.S. A-RA(G/T : 990tons). The results obtained were summarized as follows : 1. The advances of the starboard and port of the turning circle were measured based on the dumb card test method were 198m, 192m, the size of tactical diameters of them were 194m, 188m, respectively. 2. The advances at the starboard and port of the turning circles were measured according to the DGPS positioning obtained 196m, 194m, the size of tactical diameters of them were 194m, 190m, respectively. 3. The results were compared which came from the sizes of turning circle measured up with the dumb card test method during the trial test and from the size of turning circle measured according to the DGPS positioning. The advance of the turning circle measured at the time of the starboard turning according to the DGPS positioning was 1m longer than that of the trial test. And it was 21m shorter at the time of the port turning. 4. The rudder was steered at $35^{\circ}$ of rudder angle each starboard and port while the ship M.S. A-RA was advancing at full speed of 13 k't. The velocity of the ship was reduced to 7.8 k't at $180^{\circ}$ of turning angle and 6.0 k't at $360^{\circ}$ of turning angle and mean values of turning angular velocity of the port and starboard were $2.4^{\circ}$/sec and $2.3^{\circ}$/sec, respectively. 5. The Z test at each $10^{\circ}$, $20^{\circ}$, and $30^{\circ}$ of rudder angle was carried out to have the maneuvering indices K and T measured. K for the each rudder angle were 1.24, 1.45, and 1.65 while T for the each rudder angle were 0.33, 0.20, and 0.14. That is, K at the Z test at $30^{\circ}$ was greater than at the Z test of $10^{\circ}$ and $20^{\circ}$ while T at the $30^{\circ}$ Z test was less than at the Z test of $10^{\circ}$ and 20.

  • PDF

Robust Slewing Control of A Flexible Space Structure using Sliding Surface (슬라이딩 평면을 이용한 유연우주비행체의 강인 선회제어)

  • Kim, Jin Hyeong;Hong, Chang Ho;Seok, Jin Yeong;Bang, Hyo Chung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.2
    • /
    • pp.63-71
    • /
    • 2003
  • This paper presents a robust slewing control of a flexible space structure based on sliding surface design. A sliding surface is designed for a single-axis rest-to-rest slewing in view of target angle, target angular velocity, and root monent of the flexible appendage. In comparison with the Lypunov control law, both controllers guarantee the stability and command tracking capabilities for nominal system. It is also shown that the designed control law provides further robustness to internal/external uncertainties. Extending the results of a single-axis maneuver, a sliding mode control law was sought for an arbitrary three-axis maneuver. Quaternion was used to determine the attitude of a space structure and sliding surfaces were designed for each axis, thereby a robust control law was derived considering the coupling effects between each rotational axis during the maneuver. Several numerical examples were demonstrated to show the effectiveness of the designed control law.

Development of Hybrid/Dual Swirl Jet Combustor for a MGT (Part II: Numerical Study on Isothermal Flow) (마이크로 가스터빈용 하이브리드/이중 선회제트 연소기 개발 (Part II: 비반응 유동에 관한 수치해석))

  • Mun, Sun-Yeo;Hwang, Cheol-Hong;Lee, Kee-Man
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.5
    • /
    • pp.70-79
    • /
    • 2013
  • The isothermal flow structure and mixing characteristics of a hybrid/dual swirl jet combustor for micro-gas turbine (MGT) were numerically investigated. Location of pilot burner, swirl angle and direction were varied as main parameters with the identical thermal load. As a result, the variations in location of pilot nozzle, swirl angle and direction resulted in the significant change in turbulent flow field near burner exit, in particular, center toroidal recirculation zone (CTRZ) as well as turbulent intensity, and thus the flame stability and emission performance might be significantly changed. With the comparison of experimental results, the case of swirl angle $45^{\circ}$ and co-swirl flow including optimum location of pilot burner were chosen in terms of the flame stability and emissions for the development of hybrid/dual swirl jet combustor.

A Study of Real Ship Experiments to Estimate the Heeling Angle of Passenger Type Ship when Turning (여객선형의 선회 중 횡경사 추정에 관한 실선 실험 연구)

  • Kim, Hongbeom;Lee, Yunhyung;Park, Youngsun;Kong, Gilyoung
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.5
    • /
    • pp.497-503
    • /
    • 2018
  • Passenger ships and training ships have a common feature in that they serve many passengers. Thus, safe navigation is very important. During normal sailing, a ship may turn using various types of steering, including maneuvers to avoid collisions with dangerous target. When a ship turns, a heeling angle occurs. If trouble arises during sailing, a dangerous heeling angle may result or a capsizing accident. In this study, the heeling angle during turning was measured through experimentation with two training ships similar to passenger ships. These findings were compared with theoretical formulas for heeling angle when turning. We confirmed that the limit of the maximum heeling angle estimation using heeling angle formula when turning presented in IMO stability criteria. In addition, it was confirmed that the maximum estimated heeling angle can be reached by applying the result calculated in the theoretical formula 1.4 times when turning right and 1.1 times when turning left to reflect sailing speed when of rudder hard over. It is expected that this study will provide basis data for establishing safe operation standards for the prevention of dangerous heeling angles when turning.

A Study on the Application of Variable Safe-Guard Ring for the Ship Collision Avoidance in Shallow Water (천수역에서 충돌회피를 위한 가변안전경계영역 적용에 관한 연구)

  • Yang, Hyoung-Seon;Ahn, Young-Sup
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.14 no.2
    • /
    • pp.157-162
    • /
    • 2008
  • The ship's maneuverability is the important factor to avoid ship's collisions. The ship's maneuverability is usually measured in a deep water, and the turning ability is decreased and the course stability is improved in a shallow water. The variation of the turning ability could cause the risk of collision. In this paper, we proposes application technique of Variable Safe-Guard Ring to consider the shallow water effect and to be simple to estimate the grade of collision risk simultaneously. Through the mathematical simulation, the availability of new method was varified. Therefore this method is expected enough to support a maneuver for collision avoidance.

  • PDF