• 제목/요약/키워드: 선형 회귀 분석

검색결과 1,457건 처리시간 0.171초

다중선형회귀 및 인공신경망 모형을 이용한 대설피해에 따른 피해액 예측에 관한 연구 (Prediction of damages induced by Snow using Multiple-linear regression and Artificial Neural Network model)

  • 권순호;이의훈;정건희;김중훈
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2017년도 학술발표회
    • /
    • pp.20-20
    • /
    • 2017
  • 최근 기후변화 영향에 따라 전 세계적으로 인명피해 및 재산피해를 유발하는 자연재난이 지속적으로 증가하고 있으며, 그로 인한 자연재해의 규모가 점점 더 커지고 있다. 실제로 우리나라에서도 지난 1994 년에서 2013 년까지 지난 20 년간 자연재해에 의한 피해액은 12조 3천억 원으로 집계되었으며, 이 중 강우와 태풍에 의한 피해가 85 % 이고, 대설에 의한 피해는 약 13 % 로 자연재해 중 대부분의 피해는 강우 및 태풍에서 발생하지만, 폭설에 의한 피해도 적지 않은 것으로 나타났다. 이에 따라, 정확한 예측을 위해 신뢰도 높은 자료 구축을 통한 대설피해 예측에 관한 연구가 필요한 시점이다. 본 연구에서는 대설피해액 예측을 위해 우리나라의 63개 기상 관측소에서 관측한 적설심 자료 및 기상관측 자료와 사회 경제 자료 총 11개를 대설피해 예측을 위한 입력변수로 선정하고, 이를 기상관측소가 속한 도시의 면적에 따라 3개의 지역으로 구분하였다. 주성분분석을 활용하여 선정된 입력변수들을 4개의 주성분으로 구분하고, 인공신경망 및 다중선형 회귀 모형을 구성하여 각 지역별 대설피해 예측의 오차를 분석하였다. 적용결과, 인공신경망 모형을 이용한 대설피해 예측의 수정결정계수는 22.8 %~48.2 %를 나타냈고, 다중선형회귀 모형의 수정결정 계수는 9.2 %~39.7% 로 나타났다. 그러므로 인공신경망 모형이 다중회귀 모형보다 선택된 입력자료를 활용하여 대설피해를 예측하는 목적으로 조금 더 우수한 결과를 나타내었다. 향후 자료를 보완 및 모형의 고도화를 통해 보다 정확한 대설피해 예측 함수 개발이 가능할 것으로 기대된다.

  • PDF

정보(情報)의 발생(發生)과 주가(株價)의 변동성(變動性) (Information Arrival and Stock Market Volatility Dynamics)

  • 이일균
    • 재무관리연구
    • /
    • 제16권2호
    • /
    • pp.285-308
    • /
    • 1999
  • 증권의 가격형성에 유리한 뉴스와 불리한 뉴스가 도착할 때 이 뉴스가 주가의 변동성에 미치는 영향의 정도는 차이가 있다. 불리한 뉴스가 변동성에 미치는 영향도가 유리한 뉴스가 변동성에 미치는 영향도보다 크다. 따라서 불리한 뉴스가 발생할 때 형성되는 변동성의 양이 유리한 뉴스의 도착시보다 크다. 그리고 충격의 크기에 따라 이 충격이 야기하는 변동성의 양의 크기에도 차이가 존재한다. 일반 자기회귀 조건부 이분산 과정은 유리한 뉴스와 불리한 뉴스를 대칭적으로 반영하고 있다. 이 뉴스들을 비대칭적으로 포착하는 자기회귀 조건부 이분산 과정의 모형들을 실증적으로 분석하였다. 뉴스의 비대칭성과 규모를 적절히 포착하고 있는 모형들이 비선형 일반 자기회귀 조건부 이분산 과정, 지수 일반 자기회귀 조건부 이분산 과정과 정보 포착 자기회귀 조건부 이분간 과정임이 발견되었다. 이 중 비선형 일반 자기회귀 조건부 이분산 과정이 가장 좋은 모형으로 보인다. 비선형 일반 자기회귀 조건부 이분산 과정의 경우 예측오차의 승멱(power)이 약 1.5이다. 따라서 일반 자기회귀 조건부 이분산 과정의 예측오차의 승멱인 2에 비하여 작다. 이 사실은 일반 자기회귀 조건부 이분산의 예측오차의 승멱이 과도하게 측정되고 없음을 알 수 있다. 뉴스의 비대칭성과 규모를 반영하고 있는 모형들은 한결같이 예측오차의 크기에 적절한 가중치를 부여하여 예측오차의 크기를 조정하고 있다. 이 모형의 성질과 실증분석의 결과에 의하여 예측오차의 승멱은 2 이하로 수정하여 사용해야 한다는 점이 시사되고 있다. 음의 충격이 양의 충격보다 주가의 변동성을 크게 하고 없음이 발견되었다. 주가형성에 유리한 뉴스와 불리한 뉴스가 주가의 변동성에 미치는 영향의 차이와 충격의 중대성을 양으로 표시하는 규모의 차이를 반영해주는 변수들의 추정된 계수가 미국과 일본보다 절대값에 있어서 상당히 작다. 이 현상은 뉴스의 비대칭성과 규모보다는 발생하는 충격, 즉 뉴스 자체에 보다 민감하게 반응하고 있음을 보여주고 있다. 물론 투자자들이 뉴스의 비대칭성과 규모를 완전히 무시하고 투자활동을 전개하고 있다는 것을 의미하는 것은 아니다.

  • PDF

쪼갬파괴된 GFRP 하부근과 상부근의 정착길이 산정식 비교 (Comparison of Development Length Equation of Bottom and Top GFRP Bars with Splitting Failure)

  • 하상수;윤준선
    • 한국건축시공학회지
    • /
    • 제9권6호
    • /
    • pp.141-149
    • /
    • 2009
  • 본 연구에서는 GFRP 하부근과 상부근의 정착길이 설계식을 제안하기 위하여 실험적 연구를 수행하고 실험결과의 통계적 분석을 실시하였다. 상부근과 하부근 각각 52개의 수정인발실험을 계획하였으며, 실험변수는 보강근의 묻힘길이(보강근 지름의 15, 30, 45배), 순피복두께(보강근 지름의 0.5-2.0배), 상부근 효과, 보강근 종류(국내산 2종, 국외산 1종 등 3종) 및 보강근지름(D10, D13, D16)이다. 하부근과 하부근 각각에 대하여 수정인발실험을 통하여 평균부착강도를 결정하고, 평균부착강도에 대한 2변수 선형회귀분석을 실시하였다. 2변수 선형 회귀분석의 결과에 대하여 5% 분위수를 적용하여 보수적인 방법으로 정착길이 설계식을 제안하였다. 2변수 선형 회귀분석에 의한 하부근과 하부근의 정착길이 설계식을 제안하고 상부근과 하부근의 정착식을 비교하고, ACI 440.1R-06 식과 비교하였다.

고차원 선형 및 로지스틱 회귀모형에 대한 변분 베이즈 방법 소개 (Introduction to variational Bayes for high-dimensional linear and logistic regression models)

  • 장인송;이경재
    • 응용통계연구
    • /
    • 제35권3호
    • /
    • pp.445-455
    • /
    • 2022
  • 본 논문에서는 고차원 희소 회귀분석을 위한 기존의 베이지안 방법들을 소개하고, 다양한 모의실험 세팅에서 성능을 비교한다. 특히, 확장 가능하고 정확한 베이지안 추론을 가능하게 하는 변분 베이즈 방법(variational Bayes method) (Ray와 Szabó, 2021) 에 중점을 둔다. 시뮬레이션 자료를 기반으로 한 희소 고차원 선형회귀분석을 실시하고 변분 베이즈 방법의 성능을 다른 베이지안 및 빈도론 방법들과 비교한다. 로지스틱 회귀분석에서 변분 베이즈 방법의 실제 성능을 확인하기 위해 백혈병 유전자 발현 자료를 사용하여 실자료 분석을 수행한다.

비선형 회귀분석과 구조방정식을 이용한 지방부 4지 신호교차로의 사고요인분석 (A Causation Study for car crashes at Rural 4-legged Signalized Intersections Using Nonlinear Regression and Structural Equation Methods)

  • 오주택;권일;황정원
    • 대한교통학회지
    • /
    • 제31권1호
    • /
    • pp.65-76
    • /
    • 2013
  • 사고발생의 주요지점인 신호교차로 교통사고 발생건수는 해마다 증가하고 있어 교통사고를 감소시키기 위한 원인 규명이 매우 필요하다. 국내에서 연구되어진 기존의 교통사고예측 모형들은 대부분 Poisson 모형 등의 비선형 회귀분석을 이용한 사고원인분석이 주를 이루고 있다. 비선형 Econometrics 분석기법들이 사고의 성격을 분석하는데 가장 중요한 통계적 기법이기는 하지만, 도로에서 발생하는 교통사고의 원인분석적 차원에서 접근하면 이런 사고예측 모형들만 가지고 사고발생의 설명변수들을 규명하는데 구조적인 한계가 발생한다. 이는 이러한 통계적 방법들이 사고의 예측력을 높이는데 중점을 두고, 이를 위해 소수의 유효한 설명변수들만을 모형식에 포함시키기 때문이다. 따라서 사고에 대해 보다 구체적인 원인규명을 위해서는 비선형회귀분석모형의 개발과 동시에 비선형 Econometrics 분석기법의 단점을 보완하는 또 다른 통계적 노력이 필요하다. 이에 본 연구에서는 Poisson기법을 이용하여 지방부 4지 신호교차로의 사고예측모형을 개발하였고, 동시에 복합적인 인과관계를 증명하는데 다중변수관계를 포괄적으로 측정하여 탐색하는 구조방정식을 이용하여 사고모형을 개발하여 Poisson 모형의 결과값과 비교 분석하였다.

비선형 회귀분석기법을 이용한 콘크리트 교량 프리스트레스의 장기 예측 (Long-Term Prediction of Prestress in Concrete Bridge by Nonlinear Regression Analysis Method)

  • 양인환
    • 콘크리트학회논문집
    • /
    • 제18권4호
    • /
    • pp.507-515
    • /
    • 2006
  • 본 연구에서는 프리스트레스트 콘크리트(PSC) 교량의 프리스트레스를 장기적으로 예측하는 기법을 제안하였다. 제안 기법에서는 구조시스템의 계측자료를 이용하여 비선형 회귀분석을 전개하는 통계적 기법을 적용하였다. 프리스트레스의 장기예측은 비선형 회귀분석을 통해 이루어진다. 제안기법을 실제의 PSC 박스 거더 교량의 프리스트레스 예측에 적용하기 위하여 텐던에 프리스트레스 도입후 계측을 수행하였다. 프리스트레스 도입후 약 150일까지 프리스트레스는 눈에 띄게 감소하며, 손실률은 $7{\sim}8%$로 나타났다. 수치해석결과는 현장의 계측횟수가 증가할수록 신뢰구간의 폭은 감소하는 것으로 나타났다. 따라서, 제안기법에 의해 PSC 구조물의 프리스트레스를 더욱 실제적으로 예측할 수 있으며, 예측결과는 구조물의 사용기간 동안 관리 한계치에 의한 프리스트레스 관리에 유용하게 활용될 수 있을 것으로 사료된다.

선형 회귀분석을 이용한 합산 영역 테이블의 정밀도 향상 (Precision Enhancement of Summed Area Table using Linear Regression)

  • 정주현;이성길
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2013년도 춘계학술발표대회
    • /
    • pp.386-388
    • /
    • 2013
  • 합산 영역 테이블(Summed Area Table)을 사용하면 현재 픽셀 주변으로 임의의 사각 영역의 평균을 모든 픽셀을 읽을 필요 없이, 단 4번의 픽셀의 합과 차로 표시할 수 있다. 그러나 많은 픽셀의 값이 누적되는 경우 부동소수점 표현의 정밀도가 떨어지는 문제가 발생한다. 따라서 본 논문에서는 합산 영역 테이블의 정밀도를 향상시키기 위한 방법으로 선형 회귀분석(linear regression)을 이용한 오프셋을 사용할 것을 제안한다. 회귀분석을 통해 구축한 다항식을 통해 픽셀 그리고 채널 별로 다른 오프셋을 적용하여 정밀도를 효과적으로 향상하였다.

상대오차예측을 이용한 자동차 보험의 손해액 예측: 패널자료를 이용한 연구 (Predicting claim size in the auto insurance with relative error: a panel data approach)

  • 박흥선
    • 응용통계연구
    • /
    • 제34권5호
    • /
    • pp.697-710
    • /
    • 2021
  • 상대오차를 이용한 예측법은 상대오차(혹은 퍼센트오차)가 중요시되는 분야, 특히 계량경제학이나 소프트웨어 엔지니어링, 또는 정부기관 공식통계 부분에서 기존 예측방법 외에 선호되는 예측방법이다. 그 동안 상대오차를 이용한 예측법은 선형 혹은 비선형 회귀분석 뿐 아니라, 커널회귀를 이용한 비모수 회귀모형, 그리고 정상시계열분석에 이르기까지 그 범위가 확장되어 왔다. 그러나, 지금까지의 분석은 고정효과(fixed effect)만을 고려한 것이어서 임의효과(random effect)에 관한 상대오차 예측법에 대한 확장이 필요하였다. 본 논문의 목적은 상대오차예측법을 일반화선형혼합모형(GLMM)에 속한 감마회귀(gamma regression), 로그정규회귀(lognormal regression), 그리고 역가우스회귀(inverse gaussian regression)의 패널자료(panel data)에 적용시키는데 있다. 이를 위해 실제 자동차 보험회사의 손해액 자료를 사용하였고, 최량예측량과 최량상대오차예측량을 각각 적용-비교해 보았다.

고속도로 평면선형상 사고빈도분포 추정을 통한 음이항회귀모형 개발 (기하구조요인을 중심으로) (Fitting Distribution of Accident Frequency of Freeway Horizontal Curve Sections & Development of Negative Binomial Regression Models)

  • 강민욱;도철웅;손봉수
    • 대한교통학회지
    • /
    • 제20권7호
    • /
    • pp.197-204
    • /
    • 2002
  • 교통사고예측 및 예방을 위해서는 실제적으로 도로설계과정에서 제어가 가능한 도로 기하구조요소에 대한 사고관계를 파악함이 타당하다. 즉, 도로의 설계자는 도로건설에 앞서 기하구조요소와 사고와의 관계를 현장자료를 통해 정확히 밝혀 도로설계에 반영해야 한다. 이를 위해, 교통사고의 빈도분포를 박히는 것은 가장 기본이 되는 일이며, 교통사고 예측모형개발에 선행되어야 한다. 일반적으로 교통사고건수의 경우 분산이 평균보다 큰 과분산(overdispersion)의 특징을 가지고 있어 음이항 분포를 따른다고 알려져 있다. 따라서 본 논문은 사고모형의 개발에 앞서, 사고발생지점에 대한 도로설계요소와 기타 잠재적인 사고발생 관련요인이 비교적 잘 파악되어있는 호남고속도로를 중심으로 평면 선형상 곡선부에 대하여 교통사고의 분포를 적합도 검정을 통해 알아보고자 하였다. 사고자료는 한국도로송사의 호남고속도로 5년(1996∼2000)간 자료를 분석에 맞게 정리하였으며, 강민욱과 송봉수(2002)에서 제시한 평면선형에 있어서의 구간분할법을 이용하여 배향곡선구간과 단일곡선구간에 대한 사고분석을 하였다. 적합도 분석결과, 예상대로 음이항분포가 사고건수를 설명하기에 가장 적합한 확률분포로 제시되었으며, 이를 통해 최우추정법을 이용한 음이항회귀모형을 개발하였다. 구간분할법을 적용한 음이항회귀모형의 경우, 기존의 확률회귀토형에 비하여 높은 결정계수를 갖았으며, 모형에서 적용된 기하구조요소로는 차량 노출계수, 곡선반경, 단위거리 당 편경사변화값 등이다.

성분입력계의 선형회귀모델에 관한 연구 (The study On Linear Regression Model At One Component Input System))

  • 김치홍;주영수
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 1990년도 수공학논총 제32권
    • /
    • pp.167-174
    • /
    • 1990
  • 일종의 Autoregression Model에 강우와 유량의 입력에 의하여 일유입량의 예측을 행한 것으로 댐 지점의 일유입량과 우량시계열을 회귀분석하여 댐 유역의 하천유량을 예측 할 수 있는 수학적 모형을 수립하고 통계적 분석을 행 하고자 한다.

  • PDF