소프트웨어 개발에서 점점 더 중요시되는 사항은 개발 생명주기의 초기에 개발과 관련된 노력과 비용을 추정하는 능력이다. 소프트웨어 개발노력과 비용추정을 위한 대부분의 모델이 선형회귀분석 절차를 사용하였다. 그러나 소프트웨어의 복잡성, 개발환경의 다양성으로 인해 소프트웨어 개발노력과 비용 추정은 점점 더 부정확해지고 있다. 이 목적을 달성하기 위해서는 비선형 방법을 사용해야 한다. 따라서 본 논문은 소프트웨어 개발 노력을 추정하는데 비선형 관계를 표현 가능한 RBF망 모델을 제안한다. 24개 소프트웨어 사례연구를 통해 적합한 RBF 망 모델을 제시하였다. 또한, 회귀분석 모델과 RBF망 모델을 비교하여 RBF 망 모델의 정확성이 가장 좋음을 보였다.
이 연구의 목적은 인공신경망 기법을 이용하여 사면의 내진 성능을 비교적 정확하면서도 효율적으로 예측하는 모델을 도출하는데 있다. 사면의 내진 성능은 지진입력 및 사면모델의 무작위성 및 불확실성으로 인하여 정량화하기 쉽지 않다. 이러한 배경 아래 사면에 대한 확률론적 지진 취약도 분석이 몇몇 연구자에 의해 수행되었고, 이를 기반으로 다중 선형회귀분석을 통하여 사면 내진성능에 대한 닫힌식이 제안된 바 있다. 그러나 전통적인 통계학적 선형회귀분석은 다양한 조건의 사면과 이에 따른 내진 성능 사이의 비선형적 관계를 정확하게 표현하지 못하는 한계를 보였다. 이에 따라 본 연구에서는 이러한 문제점을 극복하고자 인공신경망 기법을 사면 내진성능 예측 모델을 생성하는데 적용하였다. 도출된 모델의 유효성은 기존의 다중 선형 및 다중 비선형 회귀분석을 통한 모델과 비교하여 검증하였다. 결과적으로 이전 연구의 전통적인 통계학적 회귀 분석을 통한 모델과 비교 결과, 기본적으로 인공신경망 기법을 통하여 도출된 모델이 사면의 내진성능을 예측하는데 있어 우수한 성능을 보여주었다. 이러한 정확도 높은 모델은 향후 확률에 기반한 사면의 지진취약도 지도를 개발하고, 주요 구조물의 인근 사면으로 인한 리스크를 효과적으로 평가하는데 활용될 수 있을 것이라 기대된다.
국내 석유 시장은 국제 석유 가격의 변동에 매우 민감하기 때문에 그 변동성에 대한 파악과 대처가 중요하다. 특히, 높은 소비량을 보이는 휘발유의 가격이 어떠한 요인에 인해 변화하는지 명확하게 파악하는 것이 필요하다. 국제 휘발유 가격은 휘발유 수급, 지정학적 사건, 미국 달러화 가치 변동 등 글로벌 요인에 영향을 받는다. 그러나 기존의 연구들은 휘발유의 수급에만 초점에 맞추어 진행하였다는 한계가 존재한다. 본 연구에서는 다양한 머신러닝 기반의 회귀 모델을 활용하여 거시적 경제지표와 국제 휘발유 가격 간의 인과관계를 탐색한다. 첫째, 다양한 세계 경제지표 데이터를 수집한다. 둘째, 데이터 전처리를 진행한다. 셋째, 다중선형회귀, Ridge 회귀, Lasso(Least Absolute Shrinkage and Selection Operator) 회귀 모델을 활용하여 모델링한다. 실험 결과, 테스트 데이터 셋에서 다중선형회귀 모델이 가장 높은 정확도(97.3%)를 보였다. 우리는 국제 휘발유 가격의 예측은 국내 경제 안정성과 에너지 정책 결정에 도움이 될 수 있을 것으로 기대한다.
Duncan & Chang(1970)는 던컨-창 모델을 제안하면서 흙시료의 초기 접선계수와 극한 축차응력을 구하기 위하여 쌍곡선이론을 사용하여 삼축압축시험의 응력-변형률의 비선형관계를 변환된 변형률/축차응력-변형률의 선형관계로 재구성하였다. 그러나 변환된 응력-변형률 관계는 이론적으로 선형관계를 나타내지만, 실제로는 시험이 시작되는 변형률이 작은 구간과 시료가 파괴에 이르는 변형률이 큰 구간에서는 비선형관계를 보인다. 이러한 현상은 삼축압축시험의 응력-변형률 곡선이 완전한 쌍곡선 형태가 아님을 나타낸다. 따라서 변환된 응력-변형률 곡선의 전 구간에 대하여 선형 회귀분석을 실시하여 직선의 식을 구하게 되면, 비선형관계를 나타내는 구간의 범위에 따라 선형관계식의 산정에 편차가 발생하게 된다. 이러한 편차를 줄이기 위하여 본 연구에서는 변환응력-변형률 관계에서 비선형을 나타내는 초반과 종반 구간을 제외한 구간에 대하여 선형회귀분석을 실시함으로써 초기접선계수와 극한 축차응력을 산정하는 수정회귀분석법을 제안하였다. 수정회귀분석법을 검증하기 위하여, 풍화토의 다짐시료에 대하여 압밀-배수 삼축압축시험을 실시하였다. 삼축압축시험의 응력-변형률 곡선으로부터 구한 변환응력-변형률 관계에 대해서 수정회귀분석을 실시하여 Duncan et al.(1980)이 제안한 2점법으로 구한 결과와 비교하였다. 분석결과 수정회기분석법에 비해 Duncan의 2점법으로 산정한 초기 접선계수는 4.0% 크게, 그리고 극한 축차응력은 2.9% 작게 평가되었다.
분산계수는 하천에서 오염물질의 혼합능을 파악할 수 있는 대표적인 인자이다. 특히 하수처리장 방류수 혼합예측과 같이 횡 방향 혼합에 대한 예측이 중요한 경우, 하천의 지형적, 수리학적 특성을 고려한 2차원 횡 분산계수의 결정이 필요하다. 2차원 횡 분산계수의 결정을 위해 기존 연구에서는 추적자실험결과로부터 경험식을 만들어 횡 분산계수 산정에 사용해왔다. 회귀분석을 통한 경험식 산정을 위해서는 충분한 데이터가 필요하지만, 2차원 추적자 실험 건수가 충분치 않아 신뢰성 높은 경험식 산정이 어려운 상황이다. 따라서 본 연구에서는 SMOTE기법을 이용하여 횡분산계수 실험데이터를 증폭시켜 이로부터 횡 분산계수 경험식을 산정하고자 한다. 또한 다중선형회귀분석을 통해 도출된 경험식의 한계를 보완하기 위해 다양한 머신러닝 기법을 적용하고, 횡 분산계수 산정에 적합한 머신러닝 기법을 제안하고자 한다. 기존 추적자실험 데이터로부터 하폭 대 수심비, 유속 대 마찰유속비, 횡 분산계수 데이터 셋을 수집하였으며, SMOTE 알고리즘의 적용을 통해 회귀분석과 머신러닝 기법 적용에 필요한 데이터그룹을 생성했다. 새롭게 생성된 데이터 셋을 포함하여 다중선형회귀분석을 통해 횡 분산계수 경험식을 결정하였으며, 새로 제안한 경험식과 기존 경험식에 대한 정확도를 비교했다. 또한 다중선형회귀분석을 통해 결정된 경험식은 횡 분산계수 예측범위에 한계를 보였기 때문에 머신러닝기법을 적용하여 다중선형회귀분석에 대한 예측성능을 평가했다. 이를 위해 머신러닝 기법으로서 서포트 벡터 머신 회귀(SVR), K근접이웃 회귀(KNN-R), 랜덤 포레스트 회귀(RFR)를 활용했다. 세 가지 머신러닝 기법을 통해 도출된 횡 분산계수와 경험식으로부터 결정된 횡 분산계수를 비교하여 예측 성능을 비교했다. 이를 통해 제한된 실험데이터 셋으로부터 2차원 횡 분산계수 산정을 위한 데이터 전처리 기법 및 횡 분산계수 산정에 적합한 머신러닝 절차와 최적 학습기법을 도출했다.
본 연구에서는 선형회귀모형에서 이상치와 변수변환을 고려한 변수선택 알고리즘을 다룬다. 제안된 방법은 잠재적 이상치를 탐지하여 제거한 후 변수변환 추정을 위해 최소 절사 제곱 추정법을 적용하며 가능한 모든 회귀모형을 비교하여 최종적으로 변수를 선택한다. 정확한 변수 선택과 추정된 모델의 적합도의 맥락에서 방법의 효율성을 보여주기 위해 실제 데이터 분석 및 시뮬레이션 결과가 제시된다.
하드웨어의 성능 및 컴퓨팅 기술의 발전 덕분에 기후환경 변화를 대비하기 위해 기후예측 모델 또한 발전하고 있다. 한국 기상청은 GloSea6를 도입하여 슈퍼컴퓨터를 이용하여 기상 예측을 하고있으며, 각 대학 및 연구 기관에서는 중소규모 서버에서 사용하기 위해 저해상도 결합모델인 Low-GloSea6를 사용하여 기상 연구에 활용하고 있다. 본 논문에서는 중소규모 서버에서의 기상 연구의 원활한 연구를 위해 Low-GloSea6의 Intel VTune Profiler를 사용한 분석을 진행하였으며 1125.987초의 CPU Time을 수행하는 대기모델의 tri_sor_dp_dp 함수를 Hotspot으로 검출하였다. 수치적 연산을 진행하는 기존 함수에 머신러닝 기법의 하나인 비선형 회귀모델을 적용 및 비교하여 머신러닝 적용 가능성을 확인하였다. 기존 tri_sor_dp_dp 함수의 실제 연산되는 값인 1e-3 ~ 1e-20의 범위를 가지는 Output Data인 변수 "Px"를 기준으로 평가하였을때 K-최근접 이웃 회귀 모델은 MAE가 1.3637e-08, SMAPE가 123.2707%로 가장 우수하게 나타났으며 RMSE의 경우 Light Gradient Boosting Machine 회귀 모델이 2.8453e-08로 가장 우수한 성능을 보이는 것으로 측정되었다. 따라서 Low-GloSea6 수행 과정 중 tri_sor_dp_dp 함수의 데이터를 추출 후 비선형 회귀 모델을 적용한 결과로 기존의 tri_sor_dp_dp 함수의 수치적 연산 값과 K-최근접 이웃 회귀 모델을 비교하였을 때 SMAPE가 123.2707%의 오차가 발생하는 것으로 측정되어 기존 모듈의 대체 가능성이 있다는 것을 확인하였다.
본 연구에서는 우리나라 56개 연구지역에 대해서 증발량 산정방법 중에 하나인 공기동력학적 방법의 적용성을 검토하였다. 이를 위해 과거 연구자들에 의해서 제안된 공기동력학적 증발량 산정식들을 7가지 형식으로 구분하고 일반화하여 증발량 산정모델을 유도하였다. 또한, 공기동력학적 방법 적용에 필요한 기상요소자료들(풍속, 포화미흡량, 기온, 대기압)을 이용하여 4가지의 다변량 선형회귀모델을 유도하고 그 적용성을 검토하였다. 기상자료들의 자기상관의 영향을 고려하기 위해 변수들을 차분시켜 회귀분석을 실시하고 자기상관을 고려하지 않은 경우와 비교한 결과 결정계수 값에 큰 차이가 없음을 확인하였다. 연구결과에 의하면 공기동력학적 모델이나 다변량 선형회귀모델 모두에서 산정된 월 증발량과 관측된 월 증발량 사이에 매우 높은 상관성이 있는 것으로 나타났다. 하지만 대부분의 증발량 산정모델에서 8, 9, 10, 11, 12월에 증발량을 과다 산정하고 있는 것으로 나타났다. 다변량 선형회귀모델들에 사용된 기상요소자료들은 모두 증발량 산정에 유의한 영향력이 있는 것으로 나타났으며, 특히 포화 미흡량이 가장 중요한 기상요소이며, 두 번째로는 기온, 세 번째로는 풍속, 그리고 마지막으로 대기압인 것으로 나타났다.
TBM 공법은 굴착면 안정성 확보 및 주변환경에 비치는 영향을 최소화하기 때문에 도심지나 하·해저터널 등에서 적용 사례가 증가하는 추세이다. 디스크 커터의 수명을 예측하는 대표적인 모델 중 NTNU모델은 커터수명지수(Cutter Life Index, CLI)를 주요 매개 변수로 활용하지만 복잡한 시험절차와 시험장비의 희귀성으로 측정에 어려움이 있다. 본 연구에서는 다중선형회귀분석과 트리 기반의 머신러닝 기법으로 암석물성을 활용하여 CLI를 예측하였다. 문헌 조사를 통해 암석의 일축압축강도, 압열인장강도, 등 가석영함량과 세르샤 마모지수 등을 포함한 데이터베이스를 구축하였고 파생변수를 계산하여 추가하였다. 다중선형회귀분석은 통계적 유의성과 다중공선성을 고려하여 입력 변수를 선정하였고 머신러닝 예측 모델은 변수 중요도를 기반으로 입력 변수를 선정하였다. 학습용과 검증용 데이터를 8:2로 나누어 모델 간 예측 성능을 비교한 결과 XGBoost가 최적의 모델로 선정되었다. 본 연구에서 도출된 다중선형회귀모델과 XGBoost모델을 선행 연구와 예측 성능을 비교하여 타당성을 확인하였다.
본 논문은 기존의 가야금 안족 모델을 분석하고 안족의 위치에 따른 주파수 모델링을 개선하기 위한 방법에 대해서 기술한다. 기존의 모델은 안족의 위치별 기본 주파수의 변화를 지수 함수로 가정, 리키 적분기를 이용하여 이들 주파수를 적분한 후 선형 회귀 모델을 이용하여 주파수와 안족의 위치에 관한 수식의 파라미터를 구하였다. 이 모델은 평균적으로 2.5 Hz의 오차를 보였으나 낮은 주파수에 대해서는 최대 7.75 Hz의 오차를 보였다. 이에 제안하는 모델은 안족의 위치를 세부 구간으로 나누고 각 구간 내 누적 주파수에 대한 선형 회귀 모델을 적용하였고, 리키 적분기의 계수를 바꿔가며 안족 위치의 세부 구간 내 각 현의 기본 주파수와 계산된 주파수간 RMSE(Root Mean Square Error)가 최소가 되는 계수를 찾음으로써 최적의 파라미터를 구하였다. 이러한 과정을 통해 얻어진 모델은 기존의 오차를 최대 3배가량 줄일 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.