• Title/Summary/Keyword: 선형 탄성 시스템

Search Result 129, Processing Time 0.04 seconds

Evaluation of Inelastic Displacement Ratios for Smooth Hysteretic Behavior Systems (완만한 이력거동 시스템에 대한 비탄성 변위비의 평가)

  • Song, Jong-Keol
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.15 no.3
    • /
    • pp.11-26
    • /
    • 2011
  • The inelastic displacement ratio is defined as the ratio of the peak inelastic displacement to the peak linear elastic displacement. The inelastic displacement ratio allows simple evaluation of the peak inelastic displacement directly from the peak elastic displacement without computation of the inelastic response. Existing research of the inelastic displacement ratio is limited to piece-wise linear systems such as bilinear or stiffness degrading systems. In this paper, the inelastic displacement ratio is investigated for smooth hysteretic behavior systems subjected to near- and far-fault earthquakes. A simple formula of the inelastic displacement ratio is proposed by using a two step procedure of regression analysis.

Nonlinear Aeroelastic Analyses of Composite Wing with Flap (플랩을 갖는 복합재 평판 날개의 비선형 공력 탄성학 해석)

  • Shin, Won-Ho;Bae, Jae-Sung;Lee, In
    • Composites Research
    • /
    • v.20 no.1
    • /
    • pp.8-14
    • /
    • 2007
  • Nonlinear aeroelastic analyses of composite wing with flap are performed considering free-play and dynamic stiffness of actuator. Doublet-Hybrid method is used for the calculation of subsonic unsteady aerodynamic forces. Free-play is modeled as a bilinear spring and is linearized by using the describing function method. Dynamic stiffness is obtained from governing equation of gear system and the aeroelastic analyses were performed according to ply-angle of laminate and material. The linear and nonlinear flutter analysis results show that the flutter characteristics are significantly dependent on the free-play and dynamic stiffness. from the nonlinear flutter analysis, various types of limit cycle oscillations are observed in a range of air speeds below or above the linear divergent flutter boundary.

Inelastic Displacement Ratio for SDOF Bilinear and Damping Systems (이선형 단자유도 감쇠시스템의 비탄성변위비)

  • Han, Sang-Whan;Bae, Mun-Su;Cho, Jong
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.6
    • /
    • pp.53-61
    • /
    • 2007
  • This study investigates the effect of site class, post-yield stiffness ratio, damping ratio, yield-strength reduction factor, and natural period on inelastic displacement ratio of bilinear SDF systems located at the sites classified as NEHRP site class B,C,D. The previous studies developed inelastic displacement ratio using equal displacement rule in the intermediate and long period range. But, this approximation overestimates the inelastic displacement ratio. Furthermore, inelastic displacement ratio has not been developed for the systems having a damping ratio less than 5%. This study conducts nonlinear regression analysis for proposing equations for calculating median and deviation of the inelastic displacement ratio of the bilinear SDOF system having damping ratios ranging from 0 to 20%. Using median and deviation of the inelastic displacement ratio, probabilistic inelastic displacement ratio is estimated, which can be used for performance-based seismic evaluation.

Inelastic Displacement Ratio for Strength-limited Bilinear SDF Systems (강도한계 이선형 단자유도 시스템의 비탄성 변위비)

  • Han, Sang-Whan;Lee, Tae-Sub;Seok, Seung-Wook
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.14 no.4
    • /
    • pp.23-28
    • /
    • 2010
  • This study evaluated the effect of vibration, level of lateral yielding strength, site conditions, ductility factor, strain-hardening ratio, and post-capping ratio of the strength limited bilinear SDF systems on the inelastic displacement ratio. The nonlinear response history analysis was conducted using 240 ground motions which were collected at the sites classified as site classes B, C, and D according to the NEHRP. To account for the P-$\Delta$ effects, this study considered negative stiffness ratios ranging from -0.1 to -0.5 of elastic stiffness. Four different damping ratios are used: 2, 5, 10, and 20%. From this study, an equation of inelastic displacement ratio was proposed using nonlinear regression analysis.

Effect of Smooth Hysteretic Behavior for Inelastic Response Spectra (비탄성 응답스펙트럼에 대한 완만한 곡선형 이력거동의 영향)

  • Song, Jong-Keol
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.14 no.1
    • /
    • pp.1-9
    • /
    • 2010
  • The actual hysteretic behavior of structural elements and systems is closer to smooth hysteretic behavior than piece-wise linear behavior. This paper presents a methodology for computing the constant-ductility inelastic response spectra for smooth hysteretic behaviors. The effect of the hysteretic smoothness on the inelastic response spectra for acceleration, displacement, and input energy is evaluated. The results indicate that increasing smoothness in the hysteretic behavior decreases the inelastic response spectra.

A Comparative Study of LRFD Methods Using Linear Elastic and Nonlinear Inelastic Analysis (선형탄성해석 및 비선형비탄성해석을 이용한 LRFD 설계법의 비교 연구)

  • Jang, Eun Seok;Park, Jung Woong;Kim, Seung Eock
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.6
    • /
    • pp.633-642
    • /
    • 2007
  • Although the Load and Resistance Factor Design (LRFD) method is an advanced design approach, it does not accurately capture the interaction between individual members and structural system. A nonlinear inelastic analysis for the entire structure is required to solve this problem. According to many design codes of advanced countries, a nonlinear inelastic analysis can be applied to predict the structural behavior and strength reasonably. In this study, an LRFD design method using practical nonlinear inelastic analysis was proposed. Design examples using the proposed method waspresented, and the economical efficiency and adequacy of the proposed method was investigated by comparing the design results with that of the AISC-LRFD. It has been consequently demonstrated that the proposed method can reduce the construction cost through savings in steel.

A Parameter Study of Stuctural Respanse Model in Flexible Pavement Substucture Layers (아스팔트 포장하부구조 층모델 결정에 관한 연구)

  • Choi, Jun-Seong;Seo, Joo-Won
    • International Journal of Highway Engineering
    • /
    • v.5 no.4 s.18
    • /
    • pp.13-22
    • /
    • 2003
  • Several design methods from overseas are employed without considering different conditions such as material properties, climate, and traffic condition in this country. Therefore, there are limitations in application. Therefore, new pavement analysis system which is able to design a pavement efficiently and economically should be set up. In this study, 243 probable sections are classified depending on values of layer thickness and elastic modulus, and the effect of load types for the probable sections are analyzed. The section showing larger load distribution is chosen for analysis. As a result of sensitivity, a layer thickness has more influence on pavement than an elastic modulus does. The stress distribution of FWD test load is larger than that of circular load. This study compares outputs between nonlinear elastic model and linear elastic model. Based on the result, this study finds nonlinear elastic model considering stress condition in the ground is recommended for subbase.

  • PDF

Nonlinear Static Aeroelastic Analysis of a High-Aspect-Ratio Wing with Large Deflection Effects (큰 가로세로비를 가지는 날개의 대변형 효과를 고려한 비선형 정적 공탄성 해석)

  • Yu, Jae-Han;Lee, In
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.3
    • /
    • pp.31-36
    • /
    • 2006
  • In this study, nonlinear static aeroelastic analysis system for a high-aspect-ratio wing are developed using the transonic small disturbance (TSD) and large deflection beam theory and validated. For the coupling between fluid and structure, the transformation of displacement from the structural mesh to aerodynamic one is performed by the shape function of the beam finite element and the inverse transformation of force by work equivalent load concept. Also, for the static aeroelastic analysis of the wing the use of TSD aerodynamics are justified. The validation of the system includes one of the efficient transformation methods of force and displacement.

A Variational Numerical Method of Linear Elasticity through the Extended Framework of Hamilton's Principle (확장 해밀턴 이론에 근거한 선형탄성시스템의 변분동적수치해석법)

  • Kim, Jinkyu
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.1
    • /
    • pp.37-43
    • /
    • 2014
  • The extended framework of Hamilton's principle provides a new rigorous weak variational formalism for a broad range of initial boundary value problems in mathematical physics and mechanics in terms of mixed formulation. Based upon such framework, a new variational numerical method of linear elasticity is provided for the classical single-degree-of-freedom dynamical systems. For the undamped system, the algorithm is symplectic with respect to the time step. For the damped system, it is shown to be accurate with good convergence characteristics.

Design of a Low-rise RC Building with Damping System (저층 철근콘크리트 건축물의 제진 구조 설계)

  • Lee, Eun-Jin;Hyoun, Chang-Kook;Choi, Ki-Sun;You, Young-Chan
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.454-457
    • /
    • 2011
  • 본 논문에서는 국내에서 아직 기준이 마련되지 않은 제진설계에 대한 접근을 소개하였다. ASCE 7-05 기준에 근거하여 국내 5층 규모의 철근콘크리트 신축 건물에 제진 설계를 수행하였다. 우리나라의 현행 기준을 만족하면서 효과적인 제진 시스템 설계를 위한 방법을 소개한다. ASCE 7-05 기준에서는 제진 구조물 해석 시 부재력이 공칭강도의 1.5배를 초과하지 않은 경우 경계비선형 해석을 허용하고 있다. 이 때의 제진 설계 프로세스는 기존의 중력하중 및 등가정적하중의 75%에 의한 단면을 가정하여 부재설계를 실시하고, 선형 시간이력 해석을 통해 제진장치 및 가새를 설계한다. 이후 우리나라 실정에 맞도록 보정된 인공 지진파를 입력하여 경계비선형 해석을 실시하고, 밑면 전단력 및 층간변위 등의 만족여부를 검토한다. 이 때 목표성능을 완전탄성설계 또는 유사탄성설계로 정하여 목표성능을 만족하는지도 검토하여야 한다. 본 논문에 적용한 신축 건물은 유사탄성 설계를 위해 경계비선형 해석을 실시하였고, 가장 효과적인 제진 설계를 위해 댐퍼의 종류, 설치방법, 개수, 변위 증폭비 등을 변수로 한 case study를 진행하였다. 해석 결과 목표성능을 만족하는 범위 내에서 가장 효과적인 제진 설계는 점성댐퍼, 이층 토글형태, 증폭비 2.0, 총 8개의 댐퍼를 설치하는 것으로 나타났다.

  • PDF