위상 배열 안테나는 다수개의 안테나 소자를 선형 혹은 평면(격자형 혹은 원형)으로 배열하여 각 소자에 대한 위상을 전자적으로 제어하여, 안테나의 기계적인 회전 없이 빔의 신속한 지향이 가능하다는 장점이 있다. 평면 배열 안테나는 주로 격자형 배열과 원형 배열을 사용하는데, 원형 배열이 구조적 특성상 격자형에 비해 높은 분해능을 가진다. 그러나 많은 요소를 사용하는 원형 배열의 경우 전체 배열의 반지름이 증가되어, 제한된 면적에서는 반지름이 각기 다른 다수개의 원형 배열을 가지는 동심원 배열(CCA : Concentric Circular Array or CRA : Concentirc Ring Array)을 사용하게 된다. 본 논문에서는 동심원 배열 안테나를 적용한 적응 빔형성 위성 시스템에서의 도래각 추정기를 소개하고 성능분석 결과를 제시한다. 또한, 원형 배열 안테나를 적용한 경우와의 성능을 비교/분석한다.
도래각 추정, 간섭제거, 신호 수신 등을 위해 수신신호에 포함되는 신호의 개수를 정확히 파악하는 것이 필요하다. 대표적인 신호 개수 추정 알고리즘으로 AIC(: Akaike Information Criterion)와 MDL(: Minimum Description Length) 알고리즘이 있는데, 이들 알고리즘은 각 기준이 최소화되는 값을 찾아 신호의 개수를 추정한다. 수신기의 배열 안테나 요소 개수가 증가하면 추정 성능이 향상되지만, 최소값을 찾기 위해 모든 안테나 요소에 대한 기준값을 계산하여야 하므로 복잡도가 크게 증가한다. 이러한 문제를 해결하기 위해, 본 논문에서는 빔공간 처리를 통해 차원을 축소시켜 계산량을 줄이면서 효율적으로 신호의 개수를 추정할 수 있는 빔공간 기반의 AIC와 MDL 알고리즘을 제안한다. 또한, 다양한 시나리오 기반의 컴퓨터 시뮬레이션을 통해 제안된 알고리즘의 성능을 평가하고 분석한다.
방사선 치료에 따른 방사선량 최적화 문제를 풀기 위한 새로운 방법이 제시되었다. 기존의 2차원 치료계획과는 달리 3차원 문제에서는 모든 조건이 훨씬 복잡하고 관련된 변수도 많아지기 때문에 문제를 해결하기가 쉽지 않다. 본 연구에서는 3차원 선량최적화 문제를 접근하는데 있어서, 해가 존재할 수 있는 범위를 줄여주고, 중요한 파라미터들을 미리 구해주어서 치료계획에 관련된 변수를 줄이는 방법을 연구하였다. 먼저 선형가속기와 환자좌표계사이의 좌표변환을 이용하여 두부 내의 중요기관을 피하는 빔 위치를 찾았다 그리고 임의의 빔 위치에 대해 병소를 완전히 감싸는 빔 크기와 콜리메이터 회전각을 구하였다. 그 결과 가능한 빔 위치를 줄여줄 수 있었고, 빔 크기와 회전각에 대한 의존성을 없앨 수 있었다. 따라서 고려해야할 변수의 조합이 크게 줄어들게 되었고, 목적함수를 이용한 선량최적화에 있어서 최소한의 변수로만 계산이 가능하게 되었다. 위의 결과를 이용하여 임상에 널리 쓰이는 2차원 방사선치료계획의 선량최적화 문제를 해결하였다. 선량기울기, 중요기관의 선량, 선량분포 균일도를 조합한 목적함수를 최소화하는 최적해를 step search 방법을 이용하여 구하였다. 그리고 이 최적해를 이용한 선량분포로부터 새로운 방법에 의한 선량최적화의 가능성을 확인할 수 있었고, 후속 연구를 통하여 상용 방사선 치료계획 시스템에 적용함으로써 임상에 쓰일 수 있을 것으로 사료된다.
기초과학연구원 중이온가속기구축사업단에서는 희귀동위원소(Rare Isotopes, RI) 빔의 생성 및 분리를 위한 ISOL(Isotope Separation On Line) 시스템의 설치 및 성능시험이 진행 중에 있다. ISOL 표적/이온원에서 생성된 다양한 RI 빔은 빔 전송장치 및 분리 장치를 거쳐 사용자가 원하는 RI 빔만 선별되어 ISOL 후단의 초전도 선형가속기로 전송된다. ISOL 시스템에서는 특정 RI 빔을 분리하기 위해 두 개의 분리 장치가 설치되어 있으며 EPICS(Experimental Physics and Industrial Control System)에 의해 제어가 이루어진다. 본 연구에서는 ISOL RI 빔 분리 장치 중 하나인 A/Q 분리기에서 다가(n+) RI 빔의 질량선별을 위해 이극자석의 자기장을 측정하기 위한 EPICS IOC(Input-Output Control)를 개발하였으며, 홀 프로브(Hall Probe)를 이용한 자기장 측정 실험을 통해 A/Q 분리기의 운전 안정성에 대해 평가하였다.
최근 선형가속기를 이용한 방사선치료는 세기조절방사선치료, 정위적방사선치료 등이 널리 사용되고 있다. 이러한 방사선 치료기법은 일반적으로 역방향치료계획을 사용함으로써 소조사면을 제외하기 어렵다. 그러므로 소조사면의 선량특성에 관한 정확한 측정이 필요하다. 따라서 유효체적이 서로 다른 검출기를 이용하여 소조사면에 대한 깊이선량백분율, 빔측면도, 그리고 선량출력계수를 측정하여 각 검출기의 선량특성 평가하고자 하였다. 실험 결과 X-선 6 MV에너지에 대한 빔선질($PDD_{20}/PDD_{10}$)은 $10{\times}10cm^2$에서 Diode 검출기는 Pinpoint 검출기에 비해 2.4%로 높았다. 모든 조사면에서 유효체적이 작은 Diode 검출기가 다른 검출기들과 50%이상 작은 반음영을 보여 공간분해능이 우수한 것으로 평가되었다. 출력선량계수는 조사면 $2{\times}2cm^2$에서 Semiflex 검출기 다른 검출기에 비해 2%정도 적게 측정되기 시작해서 조사면 $1{\times}1cm^2$에서는 20%정도 차이를 보이며 유효성이 없는 것으로 판단된다. 조사면 $1{\times}1cm^2$에서 Diode 검출기와 Pinpoint 검출기의 측정값은 13%정도 차이를 보였다. 조사면 $3{\times}3cm^2$이하에서는 검출기의 유효체적에 따른 출력선량계수의 차이가 크므로 가능한 유효체적이 작은 검출기를 사용해야 될 것으로 사료된다.
방사선 치료 계획의 목적은 정상 조직 부근에서는 최소한의 방사선 조사가 되는 동안 병소에는 동일한 선량이 조사되는 것이다. 선형가속기를 이용한 정위적 방사선 수술시 단일한 구형의 선량분포는 병소에 대하여 균등한 선량분포를 이루고, 병소 내에는 70% 이상의 고선량이 등선량 곡선내에 포함되면서 주위 정상조직에서는 급격히 낮은 선량을 가지게 한다. 또한 이와 같은 방법은 감마나이프를 이용한 정위적 방사선 수술의 경우와 비슷한 치료 계획을 나타낸다. 이처럼 정위적 방사선 수술시 이용되는 구형의 선량분포를 가지는 isocenter는 실제 방사선 수술 계획시 많은 시간과 경험을 바탕으로 수술 계획자에 의해 병소 내에 배치되어 진다. 본 연구는 효율적인 방사선 수술이 수행되도록 수술 계획시 구형 선량분포에 관여하는 빔관련 변수들을 고려하여 병소내 선량분포의 특성을 조사하였다. 이를 위해 불규칙한 형태의 병소를 직육면체형과 원통형으로 가정하여 비교하였고, 동일한 체적의 병소 모델에 대하여 빔관련 변수를 변화시켜 구형 선량분포를 이루는 isocenter들의 위치 및 콜리메이터의 크기를 달리하면서 병소 모델에 대한 선량 분포를 얻었다. 이때, 얻어진 선량분포 Dose Profile과 Dose Volume Histogram (DVH)으로 비교한 결과, 불규칙한 모양의 병소에 대하여 콜리메이터의 크기와 Isocenter의 개수, Isocenter의 간격 등의 빔관련 변수를 최적화함으로서 더 나은 고선량의 등선량 곡선(Isodose Curve)내에 병소를 포함시킬 수 있었다. 이러한 병소내 구형 선량 분포를 가지는 isocenter의 배치에 따른 특성들은 정위적 방사선 수술 계획시 더 효율적이면서, 빠른 수술 계획을 수립하는데 많은 도움이 될 것으로 사료된다.
선형가속기를 기반으로 하는 세기조절방사선치료와 정위적방사선수술에서는 치료계획시스템의 소조사면에 대한 신뢰할만한 선량분포를 계산하기 위해서는 우선적으로 소조사면의 정확한 빔 자료 측정이 선행되어야 한다. 특히 소조사면의 빔 자료 측정에서 조사면 가장자리에서의 급격한 선량 변화, 측면 전자비평형, 그리고 검출기의 체적 영향으로 인한 적절한 검출기 선택이 중요하다. 따라서 본 연구에서는 선형가속기의 소조사면에 대한 빔 자료 측정에 있어서 검출기의 선량 특성을 알아보고자 하였다. 검출기는 0.01 cc 부피와 0.13 cc 부피의 이온전리함과 정위적다이오드를 사용하였으며, 빔 자료는 광자선(6 MV와 15 MV)에 대하여 조사면 크기를 $2{\times}2cm^2$에서 $5{\times}5cm^2$까지 변화시켜 각 검출기를 이용하여 깊이선량백분율, 선량출력계수, 그리고 빔측면도를 측정하였다. CC01 이온전리함과 정위적다이오드 검출기를 이용한 $PDD_{20}/PDD_{10}$은 $2{\times}2cm^2$ 조사면의 경우 6 MV와 15 MV에서 각각 1.02%와 0.12% 차이를 보였다. $3{\times}3cm^2$ 이상의 조사면에서는 각 검출기를 이용하여 얻어진 $PDD_{20}/PDD_{10}$의 차이가 6 MV와 15 MV에서 각각 평균 1.15%와 0.71% 이였다. CC01 이온전리함과 정위적다이오드 검출기를 이용한 선량출력계수 측정 결과, $2{\times}2cm^2$ 조사면의 경우 6 MV와 15 MV에서 0.5%와 1.5%이내에서 일치하였다. $3{\times}3cm^2$ 이상의 조사면에서는 각 검출기의 차이가 0.5% 이내이였다. 3개의 깊이에서 측정된 빔측면도의 반음영은 정위적다이오드 검출기의 경우 6 MV와 15 MV에서 각각 평균 2.7 mm와 3.5 mm, CC01 이온전리함의 경우 각각 평균 3.4 mm와 4.3 mm, CC13 이온전리함의 경우 각각 평균 5.2 mm와 6.1 mm이였다. 이를 통해 깊이선량백분율과 선량출력계수 측정 시 $2{\times}2cm^2$ 조사면에서는 CC01 이온전리함과 정위적다이오드 검출기를 $3{\times}3cm^2$에서 $5{\times}5cm^2$ 조사면에서는 각 검출기의 사용이 가능할 것으로 판단된다. 또한 소조사면에 대한 정확한 빔측면도의 반음영을 측정하기 위해서는 유효체적이 작은 CC01 이온전리함과 정위적다이오드 검출기 사용하는 것이 타당하겠다.
의료용 및 산업용으로 활용하기 위한 C-밴드형 콤팩트 선형가속기의 개발이 동남권원자력의학원에서 진행되고 있다. 본 논문에서는 선형가속기 시작품에서 발생한 전자빔의 출력 측정 결과를 보고하고자 한다. 출력 측정은 물흡수선량에 대해 교정된 Exradin-A10 마커스형 평행평판형 전리함을 사용하여 물속 기준 깊이에서 IAEA TRS-398 프로토콜에 따라 흡수선량율을 결정하는 과정으로 진행되었다. 전자선 에너지가 낮은 점으로 인하여 선질지표($R_{50}$)은 필름 측정법을 써서 근사적으로 결정하였다. 결과로서 단위 펄스 진동수당의 선형가속기 전자빔의 출력은 $17.0cGy/(min{\cdot}Hz$로 나타났다. 본 연구의 결과는 개발 중인 전자가속기의 성능 평가 자료로 활용될 것이다.
축 이송운동의 오차를 측정할 수 있는 광전소자 측정시스템이 구현되었으며, 결론은 다음과 같다. 1) 광전소자와 레이저광원을 이용하여 축이송시에 발생하는 5개의 운동오차를 동시에 검출하는 측정방법이 개발되었으며, 이때의 정밀도는 마이크로미터오더이다. 2)광전소자에 대한 2차원 칼리브레이션이 수행되었으며, 비선형성을 고려할 때 더욱 정밀한 측 정값을 얻을 수 있었다. 3) 레이저간섭기 등에 의해서 측정이 어려운 롤(roll)오차의 측정방법이 구현되었으며, 이때 빔 분리기의 오차를 칼리브레이션할 때, 정밀한 측정값이 얻어질 수 있었다. 4)광전소자측정시스템을 마이크로 컴퓨터와 연계함으로써, 종래의 측정방법보다 매우 빠르며, 정밀한 측정시스템이 구현되었다.
다이오드 여기 고체레이저(DPSSL, Diode-Pumped Solid State Laser)는 레이저 마킹기, 미세가공기, Ti:sapphire 및 각종 레이저 매질 여기, 의료기기, 그리고 군사용 계측기 등에 다양하게 사용되고 있다. 이러한 응용분야들에 효과적으로 사용되기 위해서는 레이저 출력, 빔모드, 펄스폭, 파장 등이 응용분야에 적합하도록 설계되어야 하며, 고반사율을 갖는 금속의 가공 및 마킹, 그리고 몇가지 레이저 매질의 여기원으로 사용되기 위해서는 짧은 펄스폭과 고품질을 갖는 녹색 파장의 DPSSL 개발이 필요하다. (중략)
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.